
Professor: Dr. Yanmin Gong
TAs: Francisco Fernandes

Khuong Nguyen

Spring 2019

ENSC 3213

Midterm Exam Review
Laboratories

1



Bitwise Operators

2

 A = 0xA2;  B = 0x34;

A 10100010

B 00110100

A & B 00100000

A 10100010

B 00110100

A | B 10110110 

A 10100010

B 00110100

A ^ B 10010110

A 10100010

 ~ A 01011101

A 10100010

A>>2 00101000

A 10100010

A<<2 10001000

AND OR EXCLUSIVE OR

NOT SHIFT RIGHT SHIFT LEFT



Masking

3

 Check a bit: 
bit = a & (mask)

 Set a bit:
a  |=  (mask)

 Clear (reset) a bit:
a &= ~(mask)

 Toggle a bit:
a ^= mask



GPIO

4

#define __IO volatile //allows read and write

Typedef struct
{
  __IO uint32_t MODER;   // Mode register
  __IO uint16_t OTYPER;  // Output type register
       uint16_t rev0;    // Padding two bytes
  __IO uint32_t OSPEEDR; // Output speed register
  __IO uint32_t PUPDR;   // Pull-up/pull-down register
  __IO uint16_t IDR;     // Input data register 
       uint16_t rev1;    // Padding two bytes
  __IO uint16_t ODR;     // Output data register
       uint16_t rev2;    // Padding two bytes
  __IO uint16_t BSRRL;   // Bit set/reset register (low)
  __IO uint16_t BSRRH;   // Bit set/reset register (high)
  __IO uint32_t LCKR;    // Configuration lock register
  __IO uint32_t AFR[2];  // Alternate function registers
  __IO uint32_t BRR;     // Bit reset register
  __IO uint32_t ASCR;    // Analog switch control register
} GPIO_TypeDef; 
#define GPIOB ((GPIO_TypeDef *) 0x48000400)



GPIO

5

#define __IO volatile //allows read and write

Typedef struct
{
  __IO uint32_t MODER;   // Mode register
  __IO uint16_t OTYPER;  // Output type register
       uint16_t rev0;    // Padding two bytes
  __IO uint32_t OSPEEDR; // Output speed register
  __IO uint32_t PUPDR;   // Pull-up/pull-down register
  __IO uint16_t IDR;     // Input data register 
       uint16_t rev1;    // Padding two bytes
  __IO uint16_t ODR;     // Output data register
       uint16_t rev2;    // Padding two bytes
  __IO uint16_t BSRRL;   // Bit set/reset register (low)
  __IO uint16_t BSRRH;   // Bit set/reset register (high)
  __IO uint32_t LCKR;    // Configuration lock register
  __IO uint32_t AFR[2];  // Alternate function registers
  __IO uint32_t BRR;     // Bit reset register
  __IO uint32_t ASCR;    // Analog switch control register
} GPIO_TypeDef; 
#define GPIOB ((GPIO_TypeDef *) 0x48000400)

Remember to 
study the GPIO 
Register map!



GPIO

6

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

AHB2ENR                          

R
N

G
E

N

 

A
E

S
E

N

   

A
D

C
E

N

O
T

G
F
S

E
N

       

G
P

IO
H

E
N

G
P

IO
G

E
N

G
P

IO
F
E

N

G
P

IO
E

E
N

G
P

IO
D

E
N

G
P

IO
C

E
N

G
P

IO
B

E
N

G
P

IO
A

E
N

Mask 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Desired register 
output

                                                      1     1 1

uint32_t MASK = 0x00000013;
RCC->AHB2ENR |= MASK;

Alternative solution (using constants macros in C):
RCC->AHB2ENR |= (RCC_AHB2ENR_GPIOAEN | 
                 RCC_AHB2ENR_GPIOBEN | RCC_AHB2ENR_GPIOEEN); 

•Enable the clock of GPIO Port A (for joystick), Port B (for Red LED) and Port E 
(for Green LED)



Reading inputs

7

 Suppose we want to verify if only pin 11 on 
GPIO port A has an input, what would be 
the if-statement we need to write?

Pin 
11Therefore, if ONLY pin 11 has an input, the GPIOA_IDR 

register will have the following value:

In binary: 0b0000 0000 0000 0000 0000 1000 0000 0000
In hexadecimal: 0x00000800



Reading inputs

8

 Suppose we want to verify if only pin 11 on 
GPIO port A has an input, what would be 
the if-statement we need to write?

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

ID
15

ID
14

ID
13

ID
12

ID
11

ID
10

ID
9

ID
8

ID
7

ID
6

ID
5

ID
4

ID
3

ID
2

ID
1

ID
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID
11 0 0 0 0 0 0 0 0 0 0 0

GPIOA_IDR

Mask

Result

B
it

w
is

e
 A

N
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

If we want to 
verify if ID11 is 
equal to 1.

Result



Reading inputs

9

 Suppose we want to verify if only pin 11 on 
GPIO port A has an input, what would be 
the if-statement we need to write?

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

ID
15

ID
14

ID
13

ID
12

ID
11

ID
10

ID
9

ID
8

ID
7

ID
6

ID
5

ID
4

ID
3

ID
2

ID
1

ID
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID
11 0 0 0 0 0 0 0 0 0 0 0

GPIOA_IDR

Mask

Result

B
it

w
is

e
 A

N
D

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

If we want to 
verify if ID11 is 
equal to 0.

Result



Reading inputs

10

 Suppose we want to verify if only pin 11 on 
GPIO port A has an input, what would be 
the if-statement we need to write?

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

Re
s.

ID
15

ID
14

ID
13

ID
12

ID
11

ID
10

ID
9

ID
8

ID
7

ID
6

ID
5

ID
4

ID
3

ID
2

ID
1

ID
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ID
11 0 0 0 0 0 0 0 0 0 0 0

GPIOA_IDR

Mask

Result

B
it

w
is

e
 A

N
D

To sum up:
• To verify any bit of a register, you just need to put a 1 

in the bit you want in your mask.
• The result will depend if you want to verify if the bit is 

0 or 1.



Reading inputs

11

 Suppose we want to verify if only pin 11 on 
GPIO port A has an input, what would be 
the if-statement we need to write?

if ((GPIOA->IDR & 0x800) != 0x00)

OR

if ((GPIOA->IDR & 0x800) == 0x800)

GPIOA_IDR Mask Result

Bitwise
AND


