
Lecture 3 1/38

Lecture 3: Review of C

Professor:
Dr. Yanmin Gong

Graduate Teaching Assistants:
Francisco E. Fernandes Jr.

feferna@okstate.edu

Khuong Vinh Nguyen
Khuong.V.Nguyen@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University

Spring 2019

ENSC 3213: Computer-based Systems

mailto:feferna@okstate.edu
mailto:Khuong.V.Nguyen@okstate.edu

Lecture 3 2/38ENSC 3213: Computer-based Systems

The General Form of a Simple Program

● Simple C programs have the form:

directives

int main(void)
{

 statements
}

● C uses { and } in much the same way that some other languages
use words like begin and end.

● Even the simplest C programs rely on three key language
features:

– Directives

– Functions

– Statements

Lecture 3 3/38ENSC 3213: Computer-based Systems

Directives

● Before a C program is compiled, it is first edited by a
preprocessor.

● Commands intended for the preprocessor are called directives.
● Example:

#include <stdio.h>
● <stdio.h> is a header containing information about C’s standard I/

O library.
● Directives always begin with a # character.
● By default, directives are one line long; there’s no semicolon or

other special marker at the end.

Lecture 3 4/38ENSC 3213: Computer-based Systems

Directives
● Our standard directive will be the following:

#include “stm32l476xx.h”
● The stm32l476xx.h file contains:

– Data structures and the address mapping for all peripherals.

– Peripheral's registers declarations and bits definition.

– Macros to access peripheral’s registers hardware.
● Example:

/******************** Bit definition for RCC_AHB2ENR register ***************/

#define RCC_AHB2ENR_GPIOAEN ((uint32_t)0x00000001U)

#define RCC_AHB2ENR_GPIOBEN ((uint32_t)0x00000002U)

#define RCC_AHB2ENR_GPIOCEN ((uint32_t)0x00000004U)

#define RCC_AHB2ENR_GPIODEN ((uint32_t)0x00000008U)

#define RCC_AHB2ENR_GPIOEEN ((uint32_t)0x00000010U)

#define RCC_AHB2ENR_GPIOFEN ((uint32_t)0x00000020U)

#define RCC_AHB2ENR_GPIOGEN ((uint32_t)0x00000040U)

#define RCC_AHB2ENR_GPIOHEN ((uint32_t)0x00000080U)

#define RCC_AHB2ENR_OTGFSEN ((uint32_t)0x00001000U)

#define RCC_AHB2ENR_ADCEN ((uint32_t)0x00002000U)

#define RCC_AHB2ENR_RNGEN ((uint32_t)0x00040000U)

Lecture 3 5/38ENSC 3213: Computer-based Systems

Functions

● A function is a series of statements that have been grouped
together and given a name.

● Library functions are provided as part of the C
implementation.

● A function that computes a value uses a return statement to
specify what value it “returns”:

return x + 1;

Lecture 3 6/38ENSC 3213: Computer-based Systems

The main Function

● The main function is mandatory.
● main is special: it gets called automatically when the program is

executed.
● main returns a status code; the value 0 indicates normal

program termination.
● If there’s no return statement at the end of the main function,

many compilers will produce a warning message.

– The compiler used in our labs does not requires a return
statement at the end of the main function.

Lecture 3 7/38ENSC 3213: Computer-based Systems

Statements

● A statement is a command to be executed when the program
runs.

● Asking a function to perform its assigned task is known as
calling the function.

● For example, to display a string we call the printf function:
printf("To C, or not to C: that is the question.\n");

Lecture 3 8/38ENSC 3213: Computer-based Systems

Printing Strings

● When the printf function displays a string literal - characters
enclosed in double quotation marks - it doesn’t show the
quotation marks.

● printf doesn’t automatically advance to the next output line
when it finishes printing.

● To make printf advance one line, include \n (the new-line
character) in the string to be printed.

● However, when programming at the Bare Metal Layer, we do
not have access to the printf function.

● When developing for embedded systems, debugging is done by
manually verifying the values of the processor registers.

Lecture 3 9/38ENSC 3213: Computer-based Systems

Comments

● A comment begins with /* and end with */.

/* This is a comment */
● A single line comment can be written using //. For example:

// This is a single line comment
● Comments may appear almost anywhere in a program, either

on separate lines or on the same lines as other program text.
● Comments may extend over more than one line.

/* Name: pun.c
 Purpose: Prints a bad pun.
 Author: K. N. King */

Lecture 3 10/38ENSC 3213: Computer-based Systems

Overall Program Structure

#include "stm32l476xx.h"

int main(void){
 RCC->AHB2ENR |= 0x02; // Enable clock of Port B

 GPIOB->MODER &= ~(3<<4); // Clear mode bits
 GPIOB->MODER |= 1<<4; // Set mode to output

 GPIOB->OTYPER &= ~(1<<2); // Select push-pull output

 GPIOB->ODR |= 1 << 2; // Output 1 to turn on red LED

 while(1) {
 }
}

Indentation is important to
keep your code organized. We

normally use a single Tab or
four Spaces.

This directive will always be
used in all our programs!

Comments

Always use int main(void)!

The red lines are the
statements of this program.

Remember: when modifying
registers, always use bitwise

operations!

All of your programming logic
goes inside this dead loop.

Lecture 3 11/38ENSC 3213: Computer-based Systems

Variables and Assignment

● Most programs need a way to store data temporarily during
program execution.

– Our brain does this as well to remember key events in
our life!

– Or, perhaps, our phone number or home address.
● These storage locations are called variables.
● Variables must be declared before they are used.

Lecture 3 12/38ENSC 3213: Computer-based Systems

Variable Types

● Every variable must have a type.
● C has a wide variety of types, including int and float.
● A variable of type int (short for integer) can store a whole number

such as 0, 1, 392, or –2553.

– The largest int value is typically 2,147,483,647 but can be as
small as 32,767.

● A variable of type float (short for floating-point) can store much
larger numbers than an int variable.

● Also, a float variable can store numbers with digits after the
decimal point, like 379.125.

● Drawbacks of float variables:

– Slower arithmetic

– Approximate nature of float values

Lecture 3 13/38ENSC 3213: Computer-based Systems

Variable Types

● Variables can be declared one at a time:

int height;
float profit;

● Alternatively, several can be declared at the same time:

int height, length, width, volume;
float profit, loss;

Lecture 3 14/38ENSC 3213: Computer-based Systems

Variable Types

● When dealing with the 32-bit registers in our ARM
Cortex-M4 processor, we are going to use a special
variable type called fixed width integer types.

● These are the most common ones we are going to be
using:
– uint8_t
– uint16_t
– uint32_t
– uint64_t

● These represent unsigned integer type with width of
exactly 8, 16, 32 and 64 bits, respectively.

Lecture 3 15/38ENSC 3213: Computer-based Systems

Variable Types

● When main contains declarations, these must precede
statements:

int main(void)
{
 declarations
 statements
}

Lecture 3 16/38ENSC 3213: Computer-based Systems

Defining Names for Constants

● If you are writing a program that use the same constant number
throughout your code, you can use a feature called macro
definition.

● For example:

#define RED_LED_PIN 2
● The above line will make the name RED_LED_PIN equal to the

numeral 2.
● When a program is compiled, the preprocessor replaces each
macro by the value that it represents.

● The value of a macro can be an expression:

#define RECIPROCAL_OF_PI (1.0f / 3.14159f)
● If it contains operators, the expression should be enclosed in

parentheses.
● Using only upper-case letters in macro names is a common

convention.

Lecture 3 17/38ENSC 3213: Computer-based Systems

GNU Compiler

● The GNU Compiler Collection (GCC) consists of a suite
of free, open-source, and widely used programming and
debugging tools for many types of processors, such as
x86/x64, ARM, MIPS, and AVR. The following lists a few
important tools.

– The GNU C compiler (gcc) translates a C source file to
an assembly file or to an object file (machine code).

– The assembler (as) converts an assembly program to
an object file.

– The linker (ld) links object files and pre-compiled
libraries into an executable file in a format such as ELF
(Executable and Linkable Format).

Lecture 3 18/38ENSC 3213: Computer-based Systems

GNU Compiler

– To program microprocessors, flash programmers often
require us to convert the ELF format to a specific binary
format that can be directly written to flash or ROM. We
can use objcopy to achieve the conversion.

– The debugger (gdb) allow us to debug a program step
by step.

Lecture 3 19/38ENSC 3213: Computer-based Systems

GNU Compiler

Lecture 3 20/38ENSC 3213: Computer-based Systems

GNU Compiler

● Commands to build the project given in the previous slide:

gcc -c -g -o P.o P.c
gcc -c -g -o Q.o Q.c
as -g -o X.o X.s
as -g -o X.o X.s
as -g -o Z.o Z.s
ld TL4.ld -lfoo -o a.elf P.o Q.o X.o Q.o
objcopy -O binary a.elf a.bin

Lecture 3 21/38ENSC 3213: Computer-based Systems

● The first time you open the System Workbench IDE, you
will have to select a folder where all your projects will be
located.

● If you don’t want to always the folder every time you open
the IDE, you can check the box Use this as the
default and do not ask again.

● Click on the OK button to open the IDE.

Creating a New Project on System Workbench

Important: Your workspace
folder CANNOT contain any
spaces in its name! Otherwise,
you will face compilation errors.

It is recommended to create a
folder in your C:\ unit.

file:///C:/

Lecture 3 22/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● Once the IDE has opened, you need to select File → New
→ C Project.

Lecture 3 23/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● On the new window, give a name for your project, select Ac6
STM32 MCU Project → Ac6 STM32 MCU GCC, and click on
Next.

Lecture 3 24/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● On the window called Select Configurations, do not
change anything, and just click on the Next button.

Lecture 3 25/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● On the window called Target Configuration, make sure
everything is identical to the picture below, and click on
Next:

DON’T click on
Finish at this

point!

Lecture 3 26/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● On Project Firmware Configuration, select Hardware
Abstraction Layer (Cube HAL), and click on Download
target firmware.

Note: you only need to
download the target
firmware once. After this
first download, there will
be no need to download
again.

Lecture 3 27/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● A License Agreement will pop-up, check I accept the
agreement, and click on OK.

Lecture 3 28/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● Once the download is completed,
you can click on Finish.

● Do not change the other
configurations!

Lecture 3 29/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● Now, your project is created and you will have access to all
code files on the panel on the left in the IDE.

Your newly created project files!

Lecture 3 30/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

The inc folder will
contain all our .h files.

The src folder will
contain all our .c files
and .s files.

Our main.c will be
created inside the src
folder.

Lecture 3 31/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● The final step is to move the given file stm32l476xx.h to
the inc folder. You can do this by clicking and dragging the
file.

Drag the file to the inc folder in the IDE

Lecture 3 32/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● The IDE will ask if you want to copy or link the file. Click on
Copy files and, then, on OK.

Lecture 3 33/38ENSC 3213: Computer-based Systems

Creating a New Project on System Workbench

● Now, you can double click on the file main.c and start
writing your code! Finally!

Lecture 3 34/38ENSC 3213: Computer-based Systems

Compiling your code on System Workbench

● After you’re done writing your code, you will need to
compile it, and upload it to the development kit.

– To compile, go to Project → Build Project.

– If everything is correct with your code, you will see the
message Build Finished and no errors in the
Console window.

Lecture 3 35/38ENSC 3213: Computer-based Systems

Uploading your code using System Workbench

● To upload your newly compiled code, go to Run → Run As
→ Ac6 STM32 C/C++ Application.

● This will upload your compiled code and reset the
development kit.

Lecture 3 36/38ENSC 3213: Computer-based Systems

Uploading your code using System Workbench

● When uploading, the application may ask for permission to
use the network. Make sure you allow access.

Lecture 3 37/38ENSC 3213: Computer-based Systems

Manually Programming and Debugging the Board

● The debug interface of most development boards, such as
STM32L4 Discovery Kit, often provides a USB mass
storage interface. When a board is connected to a
computer, it is automatically mounted as a USB drive.

● To program the board, we only need to copy the
generated .bin file to the mounted USB drive.

Lecture 3 38/38ENSC 3213: Computer-based Systems

Manually Programming and Debugging the Board

OpenOCD
Server USB Driver

Telnet

GDB
ST-Link JTAG/SW

ST ARM Cortex-MJTAG
/SW

STM32 Development KitDevelopment Platform

USB
Cable

● OpenOCD (Open On-Chip Debugger) is an open-source software that
is widely used for debugging and downloading executables to
microprocessors. OpenOCD runs as a server (also known as a
daemon) on a host computer and serves two purposes:

– It receives commands from either Telnet or gdb via TCP/IP
connection.

– It translates commands received to JTAG/SW commands, and
sends them to the target ARM Cortex-M processor via the
hardware debugger.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

