
ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

1

Lab 1: Interfacing Joystick and LEDs
Instructor: Dr. Yanmin Gong

Teaching Assistants: Francisco E Fernandes Junior and Khuong V. Nguyen
Spring 2019

Goals
1. Get familiar with the SystemWorkbench software development environment
2. Create a C project for STM32L4 discovery kit and program the kit
3. Learn basics of GPIO input and output configuration: input/output, push pull, open-drain, pull

up/down, GPIO speeds
4. Program GPIO registers to perform simple digital I/O input (interfacing the joystick) and output

(interfacing LED)

Grading Rubrics (Total = 100 points)
1. Pre-lab assignment: 10 points.
2. Attendance and Class Participation: 8 points.
3. Code Organization: 8 points.
4. Lab demo questions: 10 points.
5. Primary Objective: 50 points.
6. Secondary Objective: 14 points.

Pre-lab assignment
1. Download and install the SystemWorkbench for STM32 IDE. If you need help installing it,

consult the Tutorials section on D2L.
2. Read Textbook Chapter 4.6 to review bit-wise operations.
3. Read Textbook Chapter 14 GPIO.
4. Watch Youtube Tutorials (http://web.eece.maine.edu/~zhu/book/tutorials.php)

 Lecture 5: Memory-mapped I/O (8 minutes)
 Lecture 6: GPIO Output (11 minutes)
 Lecture 7: GPIO Input (12 minutes)

5. Finish the pre-lab questions. In the pre-lab questions, you are asked what values certain items are
in binary and hexadecimal.

http://web.eece.maine.edu/~zhu/book/tutorials.php


ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

2

Lab Objectives

For this lab, you will have to implement two different functionalities described below.

 Primary Objective (50 points):
o Write a C program that uses the onboard joystick to control both the red and green

LEDs as follows:
 Toggle red LED when the right button is pushed;
 Toggle green LED when the left button is pushed;
 Set both LEDs to on when the up button is pushed;
 Set both LEDs to off when the down button is pushed.

 Secondary Objective (14 points):
o You must write a program to implement only ONE of the following options (choose the

one it is the easiest for you):
 Make the RED LED send out SOS inMorse code (· · · – – – · · ·) if the joystick’s

middle button is pushed. DOT is on for ¼ second and DASH is on for ½ second,
with ¼ second between these light-ons.

 Write an Assembly code that re-implements the primary functionality.



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

3

LEDs on the Board
There are two LEDs on the STM32L4 discovery board, which are connected to the GPIO Port B Pin 2 (PB2)
and the GPIO Port E Pin 8 (PE8) pin of the STM32L4 processor, respectively. To light up a LED, software
must at least perform the following three operations:

1. Enable the clock of the corresponding GPIO port. (By default, the clock to all peripherals, including
GPIO ports, are turned off to improve the energy efficiency.)

2. Set themode of the corresponding GPIO pin must be set as output (By default, the mode of all
GPIO pin is analog)

3. Set the output value of the corresponding GPIO pin to 1. (When the output value is 1, the voltage
on the GPIO pin is 3V. When the output value is 0, the voltage is 0V.)

The joystick (MT-008A) has five keys, including up, down, left, right, and select. Each key has an output
pin and all of them are connected to a common pin, as shown below.

The joystick is connected to the GPIO pins PA0, PA1, PA5, PA2, and PA3. A capacitor and a resister are
added for each GPIO pin to perform hardware debouncing.

Note: At ambient temperature, GPIO pin (general purpose input/outputs) can sink or source up to ±8 mA.



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

4

PIN Connections

STM32L476VGT6microcontroller featuring 1 Mbyte of Flash memory, and 128 Kbytes of RAM in
LQFP100 package (with 100 pins). The onboard peripherals are connected as follow.

Peripheral
Peripheral’s
Interface

Pin Peripheral
Peripheral’s
Interface

Pin

Joystick
(MT-008A)

Center PA0

LCD

VLCD PC3
Left PA1 COM0 PA8
Right PA2 COM1 PA9
Up PA3 COM2 PA10
Down PA5 COM3 PB9

User LEDs
LD4 Red PB2 SEG0 PA7
LD5 Green PE8 SEG1 PC5

CS43L22
Audio DAC
Stereo

I2C address
0x94

SAI1_MCK PE2 SEG2 PB1
SAI1_FS PE4 SEG3 PB13
SAI1_SCK PE5 SEG4 PB15
SAI1_SD PE6 SEG5 PD9
I2C1_SCL PB6 SEG6 PD11
I2C1_SDA PB7 SEG7 PD13
Audio_RST PE3 SEG8 PD15

MP34DT01
MEMS MIC

Audio_DIN PE7 SEG9 PC7
Audio_CLK PE9 SEG10 PA15

LSM303C
eCompass

MAG_CS PC0 SEG11 PB4
MAG_INT PC1 SEG12 PB5
MAG_DRDY PC2 SEG13 PC8
MEMS_SCK PD1 (SPI2_SCK) SEG14 PC6
MEMS_MOSI PD4 (SPI2_MOSI) SEG15 PD14
XL_CS PE0 SEG16 PD12
XL_INT PE1 SEG17 PD10

L3GD20
Gyro

MEMS_SCK PD1 (SPI2_SCK) SEG18 PD8
MEMS_MOSI PD4 (SPI2_MOSI) SEG19 PB14
MEMS_MISO PD3 (SPI2_MISO) SEG20 PB12
GYRO_CS PD7 SEG21 PB0
GYRO_INT1 PD2 SEG22 PC4
GYRO_INT2 PB8 SEG23 PA6

ST-Link V2

USART_TX PD5

USB OTG

OTG_FS_PowerSwitchOn PC9
USART_RX PD6 OTG_FS_OverCurrent PC10
SWDIO PA13 OTG_FS_VBUS PC11
SWCLK PA14 OTG_FS_ID PC12
SWO PB3 OTG_FS_DM PA11
3V3_REG_ON PB3 OTG_FS_DP PA12

Quad SPI
Flash

Memory

QSPI_CLK PE10(QUADSPI_CLK)

Clock

OSC32_IN PC14
QSPI_CS PE11(QUADSPI_NCS) OSC32_OUT PC15
QSPI_D0 PE12(QUADSPI_BK1_IO0) OSC_IN PH0
QSPI_D1 PE13(QUADSPI_BK1_IO1) OSC_OUT PH1
QSPI_D2 PE14(QUADSPI_BK1_IO2)
QSPI_D3 PE15(QUADSPI_BK1_IO3)



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

5

Introduction to GPIOs

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or
without pull-up or pull-down) or as peripheral alternate function. In this lab, we will configure PB2 and
PE8 as push-pull output. Each general-purpose I/O port x (x = A, B, C, …, H) has

 four 32-bit configuration registers
o GPIOx_MODER (mode register)
o GPIOx_OTYPER (output type register)
o GPIOx_OSPEEDR (output speed register)
o GPIOx_PUPDR (pull-up/pull-down register)

 two 32-bit data registers
o GPIOx_IDR (input data register)
o GPIOx_ODR (output data register)

 a 32-bit set/reset register (GPIOx_BSRR).
 a 32-bit locking register (GPIOx_LCKR)
 two 32-bit alternate function selection registers

o GPIOx_AFRH (alternative function high register)
o GPIOx_AFRL (alternative function low register)



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

6

MODE
00: Input 
01: General purpose output mode
10: Alternate function mode
11: Analog mode (Default )

OTYPE
0: Output push -pull (Default)
1: Output open -drain

OSPEED
00: Very low speed
01: Low speed
10: High speed
11: Very high speed

PUPDIR
00: No pull-up, pull-down (Default)
01: Pull-up
10: Pull-down
11: Reserved

IDR

ODR

BSRR

BSRR allows to set 
and reset each 

individual bit in ODR.
(atomic bitwise 

handling)

Write 1 to BSRR(i):  set ODR(i)
Write 1 to BSRR(i+SIZE): reset ODR(i)
Write 0 to BSRR has no effect on ODR

Open drain : A “0” output 
activates N-MOS whereas a “1” 
output leaves the port in Hi-Z 
(P-MOS is never activated)

Push-pull: A “0” output register 
activates N-MOS whereas a “1” 
output activates P-MOS

                 High, if Input > a high threshold
Output =  Low,  if Input < a lower threshold
                 Unchanged, otherwise

The data present on the I/O 
pin are sampled into IDR 
every AHB clock cycle.



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

7

Code Comments and Documentation

Program comments are used to improve code readability, and to assist in debugging and maintenance. A
general principal is “Structure and document your program the way you wish other programmers
would” (McCann, 1997).

The book titled “The Elements of Programming Style” by Brian Kernighan and P. J. Plauger gives good
advices for beginners.

1. Format your code well.Make sure it's easy to read and understand. Comment where needed but
don't comment obvious things it makes the code harder to read. If editing someone else's code,
format consistently with the original author.

2. Every program you write that you intend to keep around for more than a couple of hours ought to
have documentation in it. Don't talk yourself into putting off the documentation. A program that is
perfectly clear today is clear only because you just wrote it. Put it away for a few months, and it
will most likely take you a while to figure out what it does and how it does it. If it takes you a
while to figure it out, how long would it take someone else to figure it out?

3. Write Clearly - don't be too clever - don't sacrifice clarity for efficiency.

4. Don’t over comment. Use comments only when necessary.

5. Format a program to help the reader understand it. Always Beautify Code.

6. Say what you mean, simply and directly.

7. Don't patch bad code - rewrite it.

8. Make sure comments and code agree.

9. Don't just echo code in comments -make every comment meaningful.

10. Don't comment bad code - rewite it.

11. The single most important factor in style is consistency. The eye is drawn to something that
"doesn't fit," and these should be reserved for things that are actually different.



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

8

Lab 1: Pre-Lab Assignment (10 points)
Mondays students: Due on February 11, 2019 at the beginning of class
Wednesday students: Due on February 13, 2019 at the beginning of class

Print, answer, and hand it back to T.A.
(NO Dropbox submission!)

Student Name: ______________________________________________

Date: ___________________________

 In this exercise, you should fill the rowMask for a variety of registers. For the tables, always use
binary numbers! You should try to write Mask values that when combined with the bitwise set or
clear operation gives the desired bit output. You should also write the masks in hexadecimal
format.

 This symbol #means a value we don’t want to modify, or a value we don’t care.
 The initial values of all registers are always considered to be unknown!

1. (Example) Enable the clock of GPIO Port A (for joystick ), Port B (for Red LED) and Port E (for
Green LED)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AHB2ENR

R
N

G
EN

AE
SE

N

AD
C

EN
O

TG
FS

EN

G
PI

O
H

EN
G

PI
O

G
EN

G
PI

O
FE

N
G

PI
O

EE
N

G
PI

O
D

EN
G

PI
O

C
EN

G
PI

O
BE

N
G

PI
O

AE
N

Mask (Set) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

Desired bit
output

# # # # # # # # # # # # # # # # # # # # # # # # # # # 1 # # 1 1

RCC->AHB2ENR Register MASK (Bitwise set) Value = 0x00000013 (in HEX)

Note:Why do we need the mask?

When we toggle, set, or reset specific bits of a word (4 bytes), we have to keep the other bits of the
word unchanged. For example, we want to set bit 2 of the variable aWord, the following code is
incorrect because it resets all the other bits in this word.

aWord = 4;
The correct approach is:

aWord |= 4;

Typically, we use mask to facilitate the operations of toggling, setting or resetting a group of bits
in a variable.

Mask = 0x8004;
aWord |= Mask; // Set bit 15 and bit 2
aWord &= ~Mask; // Reset bit 15 and bit 2
aWord ^= Mask; // Toggle bit 15 and bit 2



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

9

2. Pin Initialization for Red LED (PB 2)

a. (2 point) Configure PB 2 as Output
GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER

M
O

D
ER

15
[1

:0
]

M
O

D
ER

14
[1

:0
]

M
O

D
ER

13
[1

:0
]

M
O

D
ER

12
[1

:0
]

M
O

D
ER

11
[1

:0
]

M
O

D
ER

10
[1

:0
]

M
O

D
ER

9[
1:

0]

M
O

D
ER

8[
1:

0]

M
O

D
ER

7[
1:

0]

M
O

D
ER

6[
1:

0]

M
O

D
ER

5[
1:

0]

M
O

D
ER

4[
1:

0]

M
O

D
ER

3[
1:

0]

M
O

D
ER

2[
1:

0]

M
O

D
ER

1[
1:

0]

M
O

D
ER

0[
1:

0]

Mask
(Clear)

Mask (Set)

Desired bit
output

# # # # # # # # # # # # # # # # # # # # # # # # # # 0 1 # # # #

GPIOB Mode Register MASK (Bitwise clear) Value = 0x_______________________________________ (in HEX)
GPIOB Mode Register MASK (Bitwise set) Value = 0x_______________________________________ (in HEX)

b. (0.5 points) Configure PB 2 Output Type as Push-Pull
Push-Pull (0, reset), Open-Drain (1)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OTYPER

Reserved

O
T1

5
O

T1
4

O
T1

3
O

T1
2

O
T1

1
O

T1
0

O
T9

O
T8

O
T7

O
T6

O
T5

O
T4

O
T3

O
T2

O
T1

O
T0

Mask
(Clear)

Desired bit
output

# # # # # # # # # # # # # 0 # #

GPIOB Output Type Register MASK (Clear) Value = 0x_____________________________________ (in HEX)

c. (1 point) Configure PB 2 Output Type as No Pull-up No Pull-down
NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR

PU
PD

R
15

[1
:0

]

PU
PD

R
14

[1
:0

]

PU
PD

R
13

[1
:0

]

PU
PD

R
12

[1
:0

]

PU
PD

R
11

[1
:0

]

PU
PD

R
10

[1
:0

]

PU
PD

R
9[

1:
0]

PU
PD

R
8[

1:
0]

PU
PD

R
7[

1:
0]

PU
PD

R
6[

1:
0]

PU
PD

R
5[

1:
0]

PU
PD

R
4[

1:
0]

PU
PD

R
3[

1:
0]

PU
PD

R
2[

1:
0]

PU
PD

R
1[

1:
0]

PU
PD

R
0[

1:
0]

Mask
(Clear)

Desired bit
output

# # # # # # # # # # # # # # # # # # # # # # # # # # 0 0 # # # #

GPIOB Pull-up Pull-down Register MASK (Bitwise clear) Value = 0x_______________________________ (in HEX)



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

10

3. Pin Initialization for Green LED (PE 8)

a. (2 points) Configure PE 8 as Output
GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER

M
O

D
ER

15
[1

:0
]

M
O

D
ER

14
[1

:0
]

M
O

D
ER

13
[1

:0
]

M
O

D
ER

12
[1

:0
]

M
O

D
ER

11
[1

:0
]

M
O

D
ER

10
[1

:0
]

M
O

D
ER

9[
1:

0]

M
O

D
ER

8[
1:

0]

M
O

D
ER

7[
1:

0]

M
O

D
ER

6[
1:

0]

M
O

D
ER

5[
1:

0]

M
O

D
ER

4[
1:

0]

M
O

D
ER

3[
1:

0]

M
O

D
ER

2[
1:

0]

M
O

D
ER

1[
1:

0]

M
O

D
ER

0[
1:

0]

Mask
(Clear)

Mask (Set)

Desired bit
output

# # # # # # # # # # # # # # 0 1 # # # # # # # # # # # # # # # #

GPIOE Mode Register MASK (Bitwise clear) Value = 0x_____________________________________ (in HEX)
GPIOE Mode Register MASK (Bitwise set) Value = 0x_____________________________________ (in HEX)

b. (0.5 points) Configure PE 8 Output Type as Push-Pull
Push-Pull (0, reset), Open-Drain (1)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OTYPER

Reserved

O
T1

5
O

T1
4

O
T1

3
O

T1
2

O
T1

1
O

T1
0

O
T9

O
T8

O
T7

O
T6

O
T5

O
T4

O
T3

O
T2

O
T1

O
T0

Mask
(Clear)

Desired bit
output

# # # # # # # 0 # # # # # # # #

GPIOE Output Type Register MASK (Bitwise clear) Value = 0x_____________________________________ (in HEX)

c. (1 point) Configure PE 8 Output Type as No Pull-up No Pull-down
NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR

PU
PD

R
15

[1
:0

]

PU
PD

R
14

[1
:0

]

PU
PD

R
13

[1
:0

]

PU
PD

R
12

[1
:0

]

PU
PD

R
11

[1
:0

]

PU
PD

R
10

[1
:0

]

PU
PD

R
9[

1:
0]

PU
PD

R
8[

1:
0]

PU
PD

R
7[

1:
0]

PU
PD

R
6[

1:
0]

PU
PD

R
5[

1:
0]

PU
PD

R
4[

1:
0]

PU
PD

R
3[

1:
0]

PU
PD

R
2[

1:
0]

PU
PD

R
1[

1:
0]

PU
PD

R
0[

1:
0]

Mask
(Clear)

Desired bit
output

# # # # # # # # # # # # # # 0 0 # # # # # # # # # # # # # # # #

GPIOE Pull-up Pull-down Register MASK (Bitwise clear) Value = 0x_______________________________ (in HEX)



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

11

4. Pin Initialization for Joy Stick

a. (1 point) Configure PA0 (Center), PA1 (Left), PA2 (Right), PA3 (Up), and PA5 (Down) as
Input
GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER

M
O

D
ER

15
[1

:0
]

M
O

D
ER

14
[1

:0
]

M
O

D
ER

13
[1

:0
]

M
O

D
ER

12
[1

:0
]

M
O

D
ER

11
[1

:0
]

M
O

D
ER

10
[1

:0
]

M
O

D
ER

9[
1:

0]

M
O

D
ER

8[
1:

0]

M
O

D
ER

7[
1:

0]

M
O

D
ER

6[
1:

0]

M
O

D
ER

5[
1:

0]

M
O

D
ER

4[
1:

0]

M
O

D
ER

3[
1:

0]

M
O

D
ER

2[
1:

0]

M
O

D
ER

1[
1:

0]

M
O

D
ER

0[
1:

0]

Mask
(Clear)

Desired bit
output

# # # # # # # # # # # # # # # # # # # # 0 0 # # 0 0 0 0 0 0 0 0

GPIOA Mode Register MASK (Bitwise clear) Value = 0x_____________________________________ (in HEX)

b. (2 points) Configure PA0 (Center), PA1 (Left), PA2 (Right), PA3 (Up), and PA5 (Down) as
Pull-down

NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11)
Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR

PU
PD

R
15

[1
:0

]

PU
PD

R
14

[1
:0

]

PU
PD

R
13

[1
:0

]

PU
PD

R
12

[1
:0

]

PU
PD

R
11

[1
:0

]

PU
PD

R
10

[1
:0

]

PU
PD

R
9[

1:
0]

PU
PD

R
8[

1:
0]

PU
PD

R
7[

1:
0]

PU
PD

R
6[

1:
0]

PU
PD

R
5[

1:
0]

PU
PD

R
4[

1:
0]

PU
PD

R
3[

1:
0]

PU
PD

R
2[

1:
0]

PU
PD

R
1[

1:
0]

PU
PD

R
0[

1:
0]

Mask
(Clear)

Mask (Set)

Desired bit
output

# # # # # # # # # # # # # # # # # # # # 1 0 # # 1 0 1 0 1 0 1 0

GPIOE Pull-up Pull-down Register MASK (Bitwise clear) Value = 0x_____________________________ (in HEX)
GPIOE Pull-up Pull-down Register MASK (Bitwise set) Value = 0x______________________________ (in HEX)



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

12

ENSC 3213 Lab 1 (10 points)
Lab Demo Questions

Student Name: _____________________________________________

Date: ____________________________

1. Demo your implementation to your lab TA.

2. Write your answer to the following questions (TA will grade them during your lab session).

 (5 points)Why did we configure the pins that drive the LEDs (PB 2 and PE 8) as push-pull instead
of open-drain?

 (5 points)What is GPIO output speed? What is the default speed? Did you notice any difference of
you choose different speeds in this lab assignment?



ENSC 3213 Computer-based Systems____________________________________________________Oklahoma State University

13

Lab 1 – Interfacing Joystick and LEDs
Spring 2019
Grading sheet

This page is the proof of your grade. Keep it until the end of the semester.
Don’t forget to ask your TA to fill out this page!

Student name: ____________________________________________________________________

CWID: ______________________________________________________________________________

Requirements Your score

Pre-lab assignment (10 points)

Attendance and Class Participation (8 points)

Code organization (8 points)

Lab demo questions (10 points)

Primary functionality (50 points)

Secondary functionality (14 points)

Total:

Graduate Teaching Assistant: Francisco E. Fernandes Jr.
Khuong V. Nguyen

_______________________________
TA Signature


	Goals
	Grading Rubrics (Total = 100 points)
	Pre-lab assignment
	Lab Objectives
	LEDs on the Board
	PIN Connections
	Introduction to GPIOs
	Code Comments and Documentation

