ENSC 3213 Computer-based Systems Oklahoma State University

Goals

Lab 1: Interfacing Joystick and LEDs
Instructor: Dr. Yanmin Gong
Teaching Assistants: Francisco E Fernandes Junior and Khuong V. Nguyen
Spring 2019

Get familiar with the System Workbench software development environment

Create a C project for STM32L4 discovery kit and program the kit

Learn basics of GPIO input and output configuration: input/output, push pull, open-drain, pull
up/down, GPIO speeds

Program GPIO registers to perform simple digital I/0 input (interfacing the joystick) and output
(interfacing LED)

Grading Rubrics (Total = 100 points)

1.

U1 W

Pre-lab assignment: 10 points.

Attendance and Class Participation: 8 points.
Code Organization: 8 points.

Lab demo questions: 10 points.

Primary Objective: 50 points.

Secondary Objective: 14 points.

Pre-lab assignment

1.

w

Download and install the System Workbench for STM32 IDE. If you need help installing it,
consult the Tutorials section on D2L.
Read Textbook Chapter 4.6 to review bit-wise operations.
Read Textbook Chapter 14 GPIO.
Watch Youtube Tutorials (http://web.eece.maine.edu/~zhu/book/tutorials.php)
e Lecture 5: Memory-mapped I/0 (8 minutes)
e Lecture 6: GPIO Output (11 minutes)
o Lecture 7: GPIO Input (12 minutes)
Finish the pre-lab questions. In the pre-lab questions, you are asked what values certain items are
in binary and hexadecimal.

http://web.eece.maine.edu/~zhu/book/tutorials.php

ENSC 3213 Computer-based Systems Oklahoma State University

Lab Objectives
For this lab, you will have to implement two different functionalities described below.

e Primary Objective (50 points):
o Write a C program that uses the onboard joystick to control both the red and green
LEDs as follows:
* Toggle red LED when the right button is pushed;
» Toggle green LED when the left button is pushed;
= Set both LEDs to on when the up button is pushed;
= Set both LEDs to off when the down button is pushed.

e Secondary Objective (14 points):
o You must write a program to implement only ONE of the following options (choose the
one it is the easiest for you):
= Make the RED LED send out SOS in Morse code (- -+ - -----) if the joystick’s
middle button is pushed. DOT is on for % second and DASH is on for % second,
with % second between these light-ons.
= Write an Assembly code that re-implements the primary functionality.

ENSC 3213 Computer-based Systems Oklahoma State University

LEDs on the Board

There are two LEDs on the STM32L4 discovery board, which are connected to the GPIO Port B Pin 2 (PBZ2)
and the GPIO Port E Pin 8 (PE8) pin of the STM32L4 processor, respectively. To light up a LED, software
must at least perform the following three operations:

1. Enable the clock of the corresponding GPIO port. (By default, the clock to all peripherals, including

GPIO ports, are turned off to improve the energy efficiency.)

2. Set the mode of the corresponding GPIO pin must be set as output (By default, the mode of all
GPIO pin is analog)

3. Set the output value of the corresponding GPIO pin to 1. (When the output value is 1, the voltage
on the GPIO pin is 3V. When the output value is 0, the voltage is 0V.)

LD4
PB2 LD R R4> A
LD R WA— b

IK 1% 0402 00 o
LD5
PES ,ip LD G Rde [Pubal

330_1% 040271 gromn

The joystick (MT-008A) has five keys, including up, down, left, right, and select. Each key has an output
pin and all of them are connected to a common pin, as shown below.

CENTER @3>~)———(®) COMMON

The joystick is connected to the GPIO pins PAO, PA1, PA5, PA2, and PA3. A capacitor and a resister are
added for each GPIO pin to perform hardware debouncing.

B2
R53

5
USER & WAKE-UP Button M= om o COMUBH
N R3S a
PAO JO¥ CENTER—JOY CENTER 53 10K 1% 0402 21 [P
Irso
L3 210K_1%_0402 7 -\
100nF_X7R_10% 0402 : 4 5 > 3

PA1 — JOY LEFT 54 1
PA5 HONE ILIE JOY DOWN 530 3% 0402 3| LEET WV

JOY DOWN : W3 DOWN
PA2 T DO JOY_RIGHT 5670 5% 0402 6 pown
PA3 LD JOY UP RS2 01 0 5% 0402 Al p 3

—= 0 5% 0402

MT-008A
a1
=Lcu 1000F_X7R_10% 0402
. . =c46 1000F_X7R_10{6_0402
Input pins with pull-down —_—C42 100nF_X7R_10%6_0402
| 100nF_X7R_10{6_0402
I Joystick

Note: At ambient temperature, GPIO pin (general purpose input/outputs) can sink or source up to +8 mA.

ENSC 3213 Computer-based Systems Oklahoma State University

PIN Connections

STM32L476VGT6 microcontroller featuring 1 Mbyte of Flash memory, and 128 Kbytes of RAM in

LQ

FP100 package (with 100 pins). The onboard peripherals are connected as follow.

. Peripheral’s . . Peripheral’s .
Peripheral Intlt)erface Pin Peripheral IntI:arface Pin
Center PAO VLCD PC3
Joystick Left PA1 COMO PAS
(MT-0084) Right PA2 COM1 PA9
Up PA3 COM2 PA10
Down PAS COM3 PB9
LD4 Red PB2 SEGO PA7
User LEDs - h e Green | PES SEG1 PC5
SAI1_MCK PE2 SEG2 PB1
CS43L22 Foprqfs PE4 SEG3 PB13
Aust"rgfc SAI1_SCK PE5 SEG4 PB15
126 address | SAILSD PE6 SEG5 PD9
0x94 12C1_SCL PB6 SEG6 PD11
12C1_SDA PB7 SEG7 PD13
Audio RST | PE3 SEG8 PD15
MP34DTO01 | Audio_DIN PE7 LCD SEG9 PC7
MEMS MIC | Audio CLK | PE9 SEG10 PA15
MAG_CS PCO SEG11 PB4
MAG_INT PC1 SEG12 PBS
MAG_DRDY | PC2 SEG13 PC8
:Cs(l)wnfg:scs MEMS_SCK | PD1 (SPI2_SCK) SEG14 PC6
MEMS_MOSI | PD4 (SPI2_MOSI) SEG15 PD14
XL_CS PEO SEG16 PD12
XL_INT PE1 SEG17 PD10
MEMS_SCK | PD1 (SPI2_SCK) SEG18 PD8
MEMS_MOSI | PD4 (SPI2_MOSI) SEG19 PB14
L3GD20 | MEMS_MISO | PD3 (SPI2_MISO) SEG20 PB12
Gyro GYRO_CS PD7 SEG21 PBO
GYRO_INT1 | PD2 SEG22 PC4
GYRO_INT2 | PB8 SEG23 PA6
USART_TX PD5 OTG_FS_PowerSwitchOn | PC9
USART_RX PD6 OTG_FS_OverCurrent PC10
. SWDIO PA13 OTG_FS_VBUS PC11
ST-Link V2 e\ eLK PA14 USBOTG o6 Fs D PC12
SWo PB3 OTG_FS_DM PA11
3V3_REG_ON | PB3 OTG_FS_DP PA12
QSPI_CLK PE10(QUADSPI_CLK) 0SC32_IN PC14
QSPI_CS PE11(QUADSPI_NCS) 0SC32_0UT PC15
Q‘;?:Sipl QSPI_DO PE12(QUADSPI_BK1_100) Clock 0SC_IN PHO
Memory |-QSPLDL PE13(QUADSPI_BK1_101) 0SC_OUT PH1
QSPI_D2 PE14(QUADSPI_BK1_102)
QSPI_D3 PE15(QUADSPI_BK1_103)

ENSC 3213 Computer-based Systems Oklahoma State University

Introduction to GPIOs

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or
without pull-up or pull-down) or as peripheral alternate function. In this lab, we will configure PB2 and
PE8 as push-pull output. Each general-purpose I/0 portx (x = A, B, C, ..., H) has

e four 32-bit configuration registers
o GPIOx_MODER (mode register)
o GPIOx_OTYPER (output type register)
o GPIOx_OSPEEDR (output speed register)
o GPIOx_PUPDR (pull-up/pull-down register)
e two 32-bit data registers
o GPIOx_IDR (input data register)
o GPIOx_ODR (output data register)
e a32-bitset/reset register (GPIOx_BSRR).
e a 32-bitlocking register (GPIOx_LCKR)
e two 32-bit alternate function selection registers
o GPIOx_AFRH (alternative function high register)
o GPIOx_AFRL (alternative function low register)

ENSC 3213 Computer-based Systems

Oklahoma State University

MODE
00: Input

01: General purpose output mode

10: Alternate

function mode

11: Analog mode (Default)

OSPEED

00: Very low speed
01: Low speed

10: High speed

11: Very high speed

r-—— - - - - - — — — — /1
. Analo
To on-chip < g | |
peripheral _ Ajternate function input | |
5 on/off The data present on the/O
= | pin are sampled into IDR |
_ Read S every AHB clock cycle
<) | \XI I
BSRR allows to set ©
and reset each » g | High, i'f Input> a high threshold
individual bit in ODR. ST_’, ° trigger Output= Low, if Input<a Iovo_ler threshold on/off
(atomic bitwise % 8_ | [e]¢] Unchanged otherwise |
handling) D = .
wite | = 5 | | ior Llnputdriver __ __ __ __ __ _ __ _ 1
> & K%
o e R |
= o Output driver
= o P Vop on/off
a I | |
= ©
o S —| | [P-mos |
BSRR | = Output
H 5 | control ™ ==~ _ |A
1 |©° ——[\emos- -
Read/write | ———
H ODR | Open drain: A “0” output VSS T
o activates N-MOS whereas a “1” Push-pull,
From on-chip | ; | output leaves the port in Hi-Z _drai |
) | f open-drain or
peripheral ~ { Alternate function output (P-MOS is never activated) disabled

Write 1 to BSRR(i): set ODR(i)
Write 1 to BSRR(i+SIZE): reset ODR(i)
Write 0 to BSRR has no effect on ODR

C
Push-pull: A “0” output register
activates N-MOS whereas a “1”
output activates P-MOS

PUPDIR

00: No pull-up, pull-down (Default)
01: Pull-up

10: Pull-down

11: Reserved

Protection
diode

1/0 pin

Protection
diode

OTYPE
0: Output push -pull (Default)
1: Output open -drain

- Analog

ENSC 3213 Computer-based Systems Oklahoma State University

Code Comments and Documentation

Program comments are used to improve code readability, and to assist in debugging and maintenance. A
general principal is “Structure and document your program the way you wish other programmers
would” (McCann, 1997).

The book titled “The Elements of Programming Style” by Brian Kernighan and P.]. Plauger gives good
advices for beginners.

1.

9.

10.

11.

Format your code well. Make sure it's easy to read and understand. Comment where needed but
don't comment obvious things it makes the code harder to read. If editing someone else's code,
format consistently with the original author.

Every program you write that you intend to keep around for more than a couple of hours ought to
have documentation in it. Don't talk yourself into putting off the documentation. A program that is
perfectly clear today is clear only because you just wrote it. Put it away for a few months, and it
will most likely take you a while to figure out what it does and how it does it. If it takes you a
while to figure it out, how long would it take someone else to figure it out?

Write Clearly - don't be too clever - don't sacrifice clarity for efficiency.
Don’t over comment. Use comments only when necessary.

Format a program to help the reader understand it. Always Beautify Code.
Say what you mean, simply and directly.

Don't patch bad code - rewrite it.

Make sure comments and code agree.

Don't just echo code in comments - make every comment meaningful.
Don't comment bad code - rewite it.

The single most important factor in style is consistency. The eye is drawn to something that
"doesn't fit," and these should be reserved for things that are actually different.

ENSC 3213 Computer-based Systems Oklahoma State University

Lab 1: Pre-Lab Assignment (10 points)

Mondays students: Due on February 11, 2019 at the beginning of class
Wednesday students: Due on February 13, 2019 at the beginning of class
Print, answer, and hand it back to T.A.

(NO Dropbox submission!)

Student Name:

Date:

¢ In this exercise, you should fill the row Mask for a variety of registers. For the tables, always use
binary numbers! You should try to write Mask values that when combined with the bitwise set or
clear operation gives the desired bit output. You should also write the masks in hexadecimal
format.

e This symbol # means a value we don’t want to modify, or a value we don’t care.

e The initial values of all registers are always considered to be unknown!

1. (Example) Enable the clock of GPIO Port A (for joystick), Port B (for Red LED) and PortE (for
Green LED)

Register |5|8/2|2(5&alFz]as|g][2|2=g=2]=|x=(2]o|w||~e|w]<|o]|~]~o
AHB2ENR 21 19 216 o|o|o|o|o|o|o|g

@l < <|5 5666|5666
Mask (set)|o|o|o|o|o|o|o|oflojo|o|o]o|o]o|o]fojo]o|o|o|ofo]o]lojo]o]1]|o]o]1]1
Desolu':cepdutblt###########################1##11

RCC->AHBZ2ENR Register MASK (Bitwise set) Value = 0x00000013 (in HEX)

Note: Why do we need the mask?

When we toggle, set, or reset specific bits of a word (4 bytes), we have to keep the other bits of the
word unchanged. For example, we want to set bit 2 of the variable aWord, the following code is
incorrect because it resets all the other bits in this word.

alWord = 4;
The correct approach is:

aWord |= 4;

Typically, we use mask to facilitate the operations of toggling, setting or resetting a group of bits
in a variable.

Mask = ©x8004;

aWord |= Mask; // Set bit 15 and bit 2

aWord &= ~Mask; // Reset bit 15 and bit 2

alWord ~= Mask; // Toggle bit 15 and bit 2

ENSC 3213 Computer-based Systems Oklahoma State University

2. Pin Initialization for Red LED (PB 2)

a. (2 point) Configure PB 2 as Output
GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

: —|olale|x|o|v|t]|nla=]|a]o|w[~]o]|v|<¢[m|a]<]o
Register (& | |&|a|a|d|d|qllaa | (Q]= (e el = = [F =[] ~e |0 ||~

2
1
0

elel|a||lg|e|leg|allg|a|le|a|lele|le| e
mooeR | @ | |G | S| S |G|y | o)y | w|y | wlly | Y|y |w
[a)] a o [a] [a] o
o) e) o) o) e) o) o (@) o o (o] o o (o] [e] o
s = s s = s = = = = = = = = = =
Mask
(Clear)
Mask (Set)
Desired bItiy | u iy !yl ol oo ol e oe | se| e o oot el | | e e) e | e | el e | @] 2| ot | | &
output
GPIOB Mode Register MASK (Bitwise clear) Value = 0x (in HEX)
GPIOB Mode Register MASK (Bitwise set) Value = 0x (in HEX)
b. (0.5 points) Configure PB 2 Output Type as Push-Pull
Push-Pull (0, reset), Open-Drain (1)
Register 5|3 |Q|Q|N|Q|Q ISR 22T (2 (Q[= (2@ |||~ e|w|F]||N| |
CEEEEERERIERREIRRER
OTYPER SelslBlslsoloflelololololo|o (o
Mask
(Clea r) Reserved
Desired bit hkkEEEE EEEEEKEE
output
GPIOB Output Type Register MASK (Clear) Value = 0x (in HEX)

c. (1 point) Configure PB 2 Output Type as No Pull-up No Pull-down
NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11)

Register |5 (3R IQINE(QIKN|SIKR ST CRI(2NE 2o ||~ v |t|= [~ ||
elele|l 2|1l @le|ellelele|g|la|e|la|e

PUPDR el 15| 5151 5| |cllca|cle|cs)|la|c]|l oo
g o & & o & o | a o | a o o o o o o
5 5 5 5 5) > | 2 > | D))) > >)
T z z z z z o o o | a o o o o o o

Mask

(Clear)

Des””tedtblt####################I####I##eel####

outpu

(in HEX)

GPIOB Pull-up Pull-down Register MASK (Bitwise clear) Value = 0x

ENSC 3213 Computer-based Systems Oklahoma State University

3. Pin Initialization for Green LED (PE 8)

a. (2 points) Configure PE 8 as Output
GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

oo~ |o]|lvs (o a]e|e
N o (o]~ v |]|m

-~ |

2
1
0

; = lo|ofo]xwo v [¢][oaleo
Register (& |® | |q|a|c|c | a)laa (S (&]= == |== |~

elele|gllg|@le|e|lg|ele|lallg|eg|le]| e
mooerR | & | & | B |G E | S| Y| Y|y |y |y | wlly | w|w|w
[a] [a] o [a] [a] [m]
e) e) Ie) [e) e) Ie) o (@) o (@] o o (@) o (@) (@)
s = s s = s = = = = = = = = = =
Mask
(Clear)
Mask (Set)
Desired bit\y |y iy |yl sl olle o|e|eleeo]af|ule|e|oe|e o o ollee e ale s e
output
GPIOE Mode Register MASK (Bitwise clear) Value = 0x (in HEX)
GPIOE Mode Register MASK (Bitwise set) Value = 0x (in HEX)
b. (0.5 points) Configure PE 8 Output Type as Push-Pull
Push-Pull (0, reset), Open-Drain (1)
Register |5 |3|Q|X|N|&|Q|I|QR|I K2 (252 T|2(Q]= 2@ |of|N e *]|e N~ |°
cEEEEEREBIEREEIRIRIER
OTYPER Blslblsls|slolollololojololo|o|o
Mask
(Clea r) Reserved
Desired bit | uun|uun o« e u a|eleee
output

(in HEX)

GPIOE Output Type Register MASK (Bitwise clear) Value = 0x

c. (1 point) Configure PE 8 Output Type as No Pull-up No Pull-down

NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11
Register 5|8 QX |N|Q(QIJ|[/A|SIRS2T Q2T INE [Clo|d|r~|e|w []o |~ |0
@l el e@|la|lallalele|e|leg|e|la|e
PUPDR clxls | s|S5 | E|c|lalla|clac|alla|ac]loc|o
s s|lsislis|s|S 555|513 5|15 5% |5
2zlz2lz21 21z 2l |lalla || a2 ||l ||z |=
Mask
(Clear)
Des“‘*dblt##############eel####l####l########
output
(in HEX)

GPIOE Pull-up Pull-down Register MASK (Bitwise clear) Value = 0x

10

ENSC 3213 Computer-based Systems Oklahoma State University

4. Pin Initialization for Joy Stick

a. (1 point) Configure PAO (Center), PA1 (Left), PA2 (Right), PA3 (Up), and PA5 (Down) as

Input
GPIO Mode: Input (00), Output (01), Alternative Function (10), Analog (11, default)

o x|~ ol io|N|=|2 |0 o||~o|w|<]|o

- |-

2
1
0

: ool |o (v |t]l|oN = (o
Reglster ™™ NN[NN N N[NN (NN (e e e e e

elele|leflg|e|le|glle|leg|le|egl|lag|gle]| e
el sl lslElEle gl ElElzlel Sl:l¢E
MODER GG |8 |G| E | S|y |ully|w|e |9)ly |9y |y
[m) [m) [a)] [m) [m) [a)]
o o o o) o e) o o o o o o o o o o
s s = = = s = = = = = = = = = =
Mask
(Clear)
Desolu':ce:utblt####################ae##aaaaaaea

(in HEX)

GPIOA Mode Register MASK (Bitwise clear) Value = 0x

b. (2 points) Configure PAO (Center), PA1 (Left), PA2 (Right), PA3 (Up), and PA5 (Down) as

Pull-down
NO PUPD (00, reset), Pullup (01), Pulldown (10), Reserved (11
Register (5|3 |Q|X|N(S QI[N S IKR Q2= Q2T |2 (YT [2|o|d|~|o|w|t|o [~||o
el | eflg|e|le|a|lglela|e|la|la|la|e
PUPDR el x|l 515 S|c|allca|clac|allea|c]| o |c
S|s|e|Efs|S[5|5]5|5|5|5)5|5[5]5
2l 2lzl2ll2 1212|2222 |2| 2 |[2| 2 |2
Mask
(Clear)
Mask (Set)
Desired bit\ iy |yl w|uiu|u| ol e a ule|ss s s ####Il a##|19191910
output I
GPIOE Pull-up Pull-down Register MASK (Bitwise clear) Value = 0x (in HEX)
GPIOE Pull-up Pull-down Register MASK (Bitwise set) Value = 0x (in HEX)

11

ENSC 3213 Computer-based Systems Oklahoma State University

ENSC 3213 Lab 1 (10 points)
Lab Demo Questions

Student Name:

Date:

1. Demo your implementation to your lab TA.

2. Write your answer to the following questions (TA will grade them during your lab session).

e (5 points) Why did we configure the pins that drive the LEDs (PB 2 and PE 8) as push-pull instead
of open-drain?

e (5 points) What is GPIO output speed? What is the default speed? Did you notice any difference of
you choose different speeds in this lab assignment?

12

ENSC 3213 Computer-based Systems Oklahoma State University

Lab 1 - Interfacing Joystick and LEDs
Spring 2019
Grading sheet

This page is the proof of your grade. Keep it until the end of the semester.
Don’t forget to ask your TA to fill out this page!

Student name:

CWID:

Requirements Your score

Pre-lab assignment (10 points)

Attendance and Class Participation (8 points)

Code organization (8 points)

Lab demo questions (10 points)

Primary functionality (50 points)

Secondary functionality (14 points)

Total:

Graduate Teaching Assistant: [] Francisco E. Fernandes Jr.
[] KhuongV. Nguyen

TA Signature

13

	Goals
	Grading Rubrics (Total = 100 points)
	Pre-lab assignment
	Lab Objectives
	LEDs on the Board
	PIN Connections
	Introduction to GPIOs
	Code Comments and Documentation

