Oklahoma State University
ENSC 3213 - Computer-based Systems - Laboratories
Spring 2019

Lab 0 - Homework 2

SOLUTION

1. (5 points) We are interested in knowing if the joystick’s up button in our discovery kit was
pressed. This button is connected to pin 3 of GPIO port A. Every time we need to read some
input, we will need to use a bitwise operation to check the corresponding bit, inside an if-statement.
Complete the code below in order to verify if bit 3 in GPIOA->IDR is equal to 1. In other words,
if the statement below is true, the up button was pressed!

Hint: You only need to write an hexadecimal mask inside the parentheses. Remember, bits
and pins start counting from 0.

if (GPIOA->IDR & (0x08) != 0x00);

2. (5 points) Complete the code below to configure pin 10 of GPIO port B as push-pull.
Hint: You only need to write an hexadecimal mask inside the parentheses.

GPIOB->0TYPER &= ~(0x0400) ;

3. (5 points) Write a single line of C code that would enable the clocks of GPIOs port A, B
and E. Hint: You should set the correct bits from the correct register.

RCC->AHB2ENR |= 0x13;

5. (10 points) Write a complete C program to set up and turn ON both the green and red LEDs
(PB.2 and PE.8) at the same time in our discovery kit.

Hint: Your C program should include the correct #include library, main function, and dead
loop. Use the code from Lecture 1, Slide 32 as your template, and the code from Lecture 2, Slide
39 to help you.

Note: Write all masks in hexadecimal format!

#include "stm321476xx.h"

int main(void) {
RCG—AHB2ENR |= 0x12; // Enable clock of Port B and E

// Set up GPIO B
GPIOB—>MODER &= ~(3<<4); // Clear mode bits

GPIOB—>MODER |= 1<<4; // Set mode to output
GPIOB—OTYPE &= ~(1<<2); // Select push—pull output

// Set up GPIO E
GPIOE>MODER &= ~(3<<16); // Clear mode bits

GPIOE—>MODER |= 1<<16; // Set mode to output
GPIOE—>OTYPE &= ~(1<<8); // Select push—pull output
while (1) {

GPIOB—ODR |= 1 << 2; // Output 1 to turn on red LED
GPIOE—=ODR |= 1 << 8; // Output 1 to turn on green LED

