

SOLUTION

1. (2.5 points) Convert the following binary numbers into decimal values:

0000 0100 0110 1001 -> 1,129

0011 0001 0111 1111 -> 12,671

0101 0101 0101 0101 -> 21,845

2. (2.5 points) Convert the following hexadecimal numbers into decimal values:

1A -> 26

FF -> 255

21 -> 33

3. (2.5 points) Represent the following in two's complement form using 16 bits:

-29 -> 1111 1111 1110 0011

165 -> 0000 0000 1010 0101

-100 -> 1111 1111 1001 1100

4. (2.5 points) Suppose the initial value of X is 0b1111, which mask and bitwise operation should be used to make X = 0b1010? **Hint:** You should answer using a couple of lines of C code!

```
mask = 0b0101;
```

```
X = X & ~(mask); // Bitwise clear
```

5. (2.5 points) Suppose the initial value of X is 0b0000, which mask and bitwise operation should be used to make X = 0b1010? **Hint:** You should answer using a couple of lines of C code!

```
mask = 0b1010;  
  
X = X | mask; // Bitwise set
```

6. (2.5 points) Suppose X is a four bit value, and its initial value is **unknown** (X = 0b????), which mask and bitwise operation should be used to make X = 0b1010? **Hint:** You should answer using a couple of lines of C code! In this case, you will need to use two different masks and perform two different bitwise operations.

```
mask1 = 0b0101;  
  
X = X & ~(mask1); // Bitwise clear  
  
mask2 = 0b1010;  
  
X = X | mask2; // Bitwise set
```

7. (2.5 points) Suppose Mask = 0x00000F0F and P = 0xABCDABCD. What are the results of the following bitwise operations?

- (1) Q = P & Mask;
Q = 0x00000B0D
- (2) Q = P | Mask;
Q = 0xABCDAFCF
- (3) Q = P ^ Mask;
Q = 0xABCD4C2
- (4) Q = ~Mask;
Q = 0xFFFFF0F0
- (5) Q = P & ~Mask;
Q = 0xABCD0C0

8. (2.5 points) Given the following variables and their initializations:

```
int a, x, y, z;  
float b, u, v;  
  
x = 10; y = 20; z = 30;  
u = 4.0; v = 10.0;
```

What are the values of the expressions in each of the following problems:

(1) $a = x - y - z;$

a = -40

(2) $a = x + y * z;$

a = 610

(3) $a = z / y + y;$

a = 21

(4) $a = x / y / z;$

a = 0

(5) $b = v - u;$

b = 6.0

(6) $b = v / u;$

b = 2.5

9. (2.5 points) Under what conditions are the following expressions True?

(1) $(x == y \ \&\& \ y == z)$

Only if $x = y = z$.

(2) $(x == y \ \|\| \ y == z)$

Only one of these three possibilities are true:

(a) $x = y = z$

(b) $x = y \neq z$

(c) $x \neq y = z$

(3) $(x > y \ \&\& \ x < z)$

Only if $x > y$ and $x < z$ at the same time.

10. (2.5 points) We wish to print integers from 1 through 10. Check if the following loop will do so correctly.

```
i = 1;  
while ( i < 10 ) {  
    printf( "\%d\n" , i );  
    i = i + 1;  
}
```

No. The code snippet contains an error.

In C, the type of all variables must be declared. So, the first line should be `int i = 1;`. The while loop itself will only print integers from 1 through 9.

The correct code would be:

```
int i = 1;  
while ( i <= 10 ) {  
    printf( "\%d\n" , i );  
    i = i + 1;  
}
```