
Professor: Dr. Yanmin Gong

TAs: Francisco Fernandes

Khuong Nguyen

Spring 2019

ENSC 3213

Homework Review

1

Homework 3

2

 The default attribute of the CODE section of an assembly code is:

 Read Only

 Write Only

 Read and Write

 None of above

Homework 3 – Question 1

3

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the Linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of subroutine
 ... ; Assembly program starts here
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

Table 3-3. Skeleton of an ARM assembly program.

Textbook page 69

 The default attribute of the DATA section of an assembly code is:

 Read Only

 Write Only

 Read and Write

 None of above

Homework 3 – Question 2

4

 AREA myData, DATA, READWRITE ; Define a data section
Array DCD 1, 2, 3, 4, 5 ; Define an array with five integers

 AREA myCode, CODE, READONLY ; Define a code section
 EXPORT __main ; Make __main visible to the Linker
 ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of subroutine
 ... ; Assembly program starts here
 ENDP ; Mark the end of a subroutine
 END ; Mark the end of a program

Table 3-3. Skeleton of an ARM assembly program.

Textbook page 69

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

5

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

6

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

Little Endian

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

7

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

32 bits or 4 bytes

Little Endian

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

8

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

32 bits or 4 bytes

Little Endian

Byte 3 Byte 2 Byte 1 Byte 0

1st byteLast byte

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

9

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

32 bits or 4 bytes

Little Endian

Byte 3 Byte 2 Byte 1 Byte 0

1st byteLast byte

A word (32 bits)
will always follow
this structure for
either little or big

endian

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

10

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

32 bits or 4 bytes

Little Endian

4 bytes

Byte 3 Byte 2 Byte 1 Byte 0

1st byteLast byte

A word (32 bits)
will always follow
this structure for
either little or big

endian

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

11

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

32 bits or 4 bytes

Little Endian

4 bytes

5th byte.
It will not be included in

the answer

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

12

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

Least significant

Most significant

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

13

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE

Least significant

Most significant

1st byte:
Least significant

Last byte:
Most significant

 Most ARM processors support both Big Endian and Little Endian. ARM

processor is Little Endian by default.

Homework 3 – Question 3

14

Endian
First byte

(lowest address)
Middle bytes

Last byte
(highest address)

big most significant ... least significant

little least significant ... most significant

Memory Address Memory Data
0x8000 0xEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA7

0x8004 0xFF

In Big Endian? EE 8C 90 A7

1st byte:
Most significant

Last byte:
Least significant

Homework 3 – Question 4 – Item A

15

 Suppose r0 = 0x8000, and the memory layout is as follows:

 What is the value of r1 after running LDR r1, [r0] if the system is little

endian or big endian?

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

Homework 3 – Question 4 – Item A

16

 Suppose r0 = 0x8000, and the memory layout is as follows:

 What is the value of r1 after running LDR r1, [r0] if the system is little

endian or big endian?

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

This instruction will load a word (32
bits) from the memory data starting

from address r0.

Homework 3 – Question 4 – Item A

17

 Suppose r0 = 0x8000, and the memory layout is as follows:

 What is the value of r1 after running LDR r1, [r0] if the system is little

endian or big endian?

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

This instruction will load a word (32
bits) from the memory data starting

from address r0.

0x8000 in this case will be used as a
memory address. r0 DOES NOT

represent data in this context!

Homework 3 – Question 4 – Item A

18

 Suppose r0 = 0x8000, and the memory layout is as follows:

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1ALeast significant
4 bytes

Most significant

In Little Endian: r1 = 0D EB 2C 1A

In Big Endian: r1 = 1A 2C EB 0D

1st byte:
Least significant

1st byte:
Most significant

Last byte:
Least significant

Last byte:
Most significant

Homework 3 – Question 4 – Item B

19

 Suppose r0 = 0x8000, and the memory layout is as follows:

 Suppose the system is set as little endian. What are the values of r1 and r0 if the
instructions are executed separately?

 LDR r1, [r0, #4]

 LDR r1, [r0], #4

 LDR r1, [r0, #4]!

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

This means that one instruction does
not affect the other. So, when you run
the next instruction, r1 and r0 will be

reinitialized.

Homework 3 – Question 4 – Item B

20

 Suppose r0 = 0x8000, and the memory layout is as follows:

 Suppose the system is set as little endian. What are the values of r1 and r0 if the
instructions are executed separately?

 LDR r1, [r0, #4]

 LDR r1, [r0], #4

 LDR r1, [r0, #4]!

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

Let’s look them one by one!

Homework 3 – Question 4 – Item B

21

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

In this case, we are accessing the
memory data using the pre-index

mode

Homework 3 – Question 4 – Item B

22

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

In this case, we are accessing the
memory data using the pre-index

mode

It means we are going to load the
memory data from address r0 + 4

into r1.

Homework 3 – Question 4 – Item B

23

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

In this case, we are accessing the
memory data using the pre-index

mode

It means we are going to load the
memory data from address r0 + 4

into r1.

In the pre-index mode r0 will NOT
be modified.

Homework 3 – Question 4 – Item B

24

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1Ar0

r0 + 4

The instruction

will start

loading data

from this

memory address

into r1

Homework 3 – Question 4 – Item B

25

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1Ar0

Most significant

Least significantr0 + 4

The instruction

will start

loading data

from this

memory address

into r1

Homework 3 – Question 4 – Item B

26

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1Ar0

Most significant

Least significantr0 + 4

The instruction

will start

loading data

from this

memory address

into r1

Solution:
r0 = 0x8000
r1 = 79 CD A3 FD

r0 is unchanged!

Homework 3 – Question 4 – Item B

27

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0], #4

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

In this case, we are accessing the
memory data using the post-index

mode

Homework 3 – Question 4 – Item B

28

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0], #4

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

In this case, we are accessing the
memory data using the post-index

mode

It means we are going to load the
memory data from address r0 into

r1.

After loading, r0 is updated to
become r0 + 4.

Homework 3 – Question 4 – Item B

29

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0], #4

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

r0
After loading,

r0 is updated to

0x8000 + 4

First, load a

word (32 bit)

data starting

from the initial

r0 (0x8000).

Homework 3 – Question 4 – Item B

30

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0], #4

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

r0
After loading,

r0 is updated to

0x8000 + 4

First, load a

word (32 bit)

data starting

from the initial

r0 (0x8000).

Most significant

Least significant

Homework 3 – Question 4 – Item B

31

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0], #4

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

r0
After loading,

r0 is updated to

0x8000 + 4

First, load a

word (32 bit)

data starting

from the initial

r0 (0x8000).

Most significant

Least significant

Solution:
r0 = 0x8004
r1 = 0D EB 2C 1A

r0 = r0 + 4

Homework 3 – Question 4 – Item B

32

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]!

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

In this case, we are accessing the
memory data using the pre-index with

update mode.

Homework 3 – Question 4 – Item B

33

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]!

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1A

In this case, we are accessing the
memory data using the pre-index with

update mode.

It means we are going to load the
memory data from address r0 + 4

into r1.

After loading, r0 is also updated to
become r0 + 4.

Homework 3 – Question 4 – Item B

34

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]!

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1Ar0

Most significant

Least significantr0 + 4

The instruction

will start

loading data

from this

memory address

into r1

before loading

r0

after loading

Homework 3 – Question 4 – Item B

35

 Suppose r0 = 0x8000, and the memory layout is as follows:

 LDR r1, [r0, #4]!

Address Data
0x8007 0x79

0x8006 0xCD

0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 0x1Ar0

Most significant

Least significantr0 + 4

The instruction

will start

loading data

from this

memory address

into r1

before loading

r0

after loading

Solution:
r0 = 0x8004
r1 = 79 CD A3 FD

r0 = r0 + 4

Homework 4

36

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

37

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

38

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

In this case, each line of code
is NOT independent of each
other. We should consider
these three lines as a single

program.

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory
are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

39

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]In this case, all memory
positions will start empty or

equal to 0x00.

Address Data

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003

0x20000002

0x20000001

0x20000000

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

40

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Another important thing to
note is that r1 already

contains some data and we are
going to store this data back in

the memory using the STR
instruction.

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

41

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Post-Index:
First, it stores r1 in the memory

address of r0. Then, it updates r0
to r0 + 4.

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

42

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Post-Index:
First, it stores r1 in the memory

address of r0. Then, it updates r0
to r0 + 4.

r1 = 12 34 56 78

1st byte:
Least significant

Last byte:
Most significant

This word (32 bits)

will be stored in

memory, starting

from address

0x20000000

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

43

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Post-Index:
First, it stores r1 in the memory

address of r0. Then, it updates r0
to r0 + 4.

Address Data

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78r0

Most significant

Least significant

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

44

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Post-Index:
First, it stores r1 in the memory

address of r0. Then, it updates r0
to r0 + 4.

Address Data

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

Now, r0 is
updated to
0x20000004

 Suppose r0 = 0x20000000 and r1 = 0x12345678. All bytes in memory

are initialized to 0x00. Suppose the following assembly program has been

executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Homework 4 – Chapter 5 – Exercise 3

45

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index with update:
First, it stores r1 in the memory

address of r0 + 4. Then, it
updates r0 to r0 + 4.

Address Data

0x20000007

0x20000006

0x20000005

0x20000004

0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

Homework 4 – Chapter 5 – Exercise 3

46

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index with update:
First, it stores r1 in the memory

address of r0 + 4. Then, it
updates r0 to r0 + 4.

Address Data
0x20000012
0x20000011
0x20000010
0x20000009
0x20000008
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

r0 + 4

Homework 4 – Chapter 5 – Exercise 3

47

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index with update:
First, it stores r1 in the memory

address of r0 + 4. Then, it
updates r0 to r0 + 4.

Address Data
0x2000000C
0x2000000B 12
0x2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

r0 + 4

Most significant

Least significant

Homework 4 – Chapter 5 – Exercise 3

48

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index with update:
First, it stores r1 in the memory

address of r0 + 4. Then, it
updates r0 to r0 + 4.

Address Data
0x2000000C
0x2000000B 12
0x2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

Now, r0 is
updated to
0x20000008

Homework 4 – Chapter 5 – Exercise 3

49

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index:
First, it stores r1 in the

memory address of r0 + 4,
and r0 remains unchanged.

Address Data
0x2000000C
0x2000000B 12
0x2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

Homework 4 – Chapter 5 – Exercise 3

50

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index:
First, it stores r1 in the

memory address of r0 + 4,
and r0 remains unchanged.

Address Data
0x20000010
0x2000000F
0x2000000E
0x2000000D
0x2000000C
0x2000000B 12
0x2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

r0 + 4
Most significant

Least significant

Homework 4 – Chapter 5 – Exercise 3

51

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index:
First, it stores r1 in the

memory address of r0 + 4,
and r0 remains unchanged.

Address Data
0x20000010
0x2000000F 12
0x2000000E 34
0x2000000D 56
0x2000000C 78
0x2000000B 12
0x2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

r0 + 4
Most significant

Least significant

Homework 4 – Chapter 5 – Exercise 3

52

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0, 4]

Pre-index:
First, it stores r1 in the

memory address of r0 + 4,
and r0 remains unchanged.

Address Data
0x20000010
0x2000000F 12
0x2000000E 34
0x2000000D 56
0x2000000C 78
0x2000000B 12
0x2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

r0

r0 remains
unchanged

and equal to
0x20000008

Homework 4 – Chapter 6 – Exercise 1

53

 Translate the following code into a C program and explain what it does.

 MOV r2, #1
 MOV r1, #1

loop CMP r1, r0
 BGT done
 MUL r2, r1, r2
 ADD r1, r1, #1
 B loop

done MOV r0, r2

Homework 4 – Chapter 6 – Exercise 1

54

 Translate the following code into a C program and explain what it does.

 MOV r2, #1 ; r2 = 1
 MOV r1, #1 ; r1 = 1

loop CMP r1, r0 ; compare r1 to r0. In this case, r0 is our input variable.
 BGT done ; If r1 is greater than r0 go to “done”
 ; If r1 is less or equal to r0 the following lines will run.
 MUL r2, r1, r2 ; r2 = r2*r1
 ADD r1, r1, #1 ; r1 = r1 + 1
 B loop ; go back to “loop”

done MOV r0, r2 ; When r1 is greater than r0, store the result r2 in r0

Homework 4 – Chapter 6 – Exercise 1

55

 Translate the following code into a C program and explain what it does.

 MOV r2, #1
 MOV r1, #1

loop CMP r1, r0
 BGT done
 MUL r2, r1, r2
 ADD r1, r1, #1
 B loop

done MOV r0, r2

So, the easiest way to know what is this program computing is to plug in

some numbers. We know that r0 is the input and r2 is the output.

If r0 = 0  r2 = 1  r1 = 1 (the loop will not run)

If r0 = 1  r2 = 1*1 = 1  r1 = 1 + 1 = 2

If r0 = 2  r2 = 1*1 = 1  r1 = 1 + 1 = 2
 r2 = 1*2 = 2  r1 = 2 + 1 = 3

If r0 = 3  r2 = 1*1 = 1  r1 = 1 + 1 = 2
 r2 = 1*2 = 2  r1 = 2 + 1 = 3
 r2 = 3*2 = 6  r1 = 3 + 1 = 4

If r0 = 4  r2 = 1*1 = 1  r1 = 1 + 1 = 2
 r2 = 1*2 = 2  r1 = 2 + 1 = 3
 r2 = 3*2 = 6  r1 = 3 + 1 = 4
 r2 = 6*4 = 24  r1 = 4 + 1 = 5

Homework 4 – Chapter 6 – Exercise 1

56

 Translate the following code into a C program and explain what it does.

 MOV r2, #1
 MOV r1, #1

loop CMP r1, r0
 BGT done
 MUL r2, r1, r2
 ADD r1, r1, #1
 B loop

done MOV r0, r2

So, the easiest way to know what is this program computing is to plug in

some numbers. We know that r0 is the input and r2 is the output.

If r0 = 0  r2 = 1  r1 = 1

If r0 = 1  r2 = 1*1 = 1  r1 = 1 + 1 = 2

If r0 = 2  r2 = 1*1 = 1  r1 = 1 + 1 = 2
 r2 = 1*2 = 2  r1 = 2 + 1 = 3

If r0 = 3  r2 = 1*1 = 1  r1 = 1 + 1 = 2
 r2 = 1*2 = 2  r1 = 2 + 1 = 3
 r2 = 3*2 = 6  r1 = 3 + 1 = 4

If r0 = 4  r2 = 1*1 = 1  r1 = 1 + 1 = 2
 r2 = 1*2 = 2  r1 = 2 + 1 = 3
 r2 = 3*2 = 6  r1 = 3 + 1 = 4
 r2 = 6*4 = 24  r1 = 4 + 1 = 5

The code is

computing

the factorial

of r0.

Homework 4 – Chapter 6 – Exercise 1

57

 Translate the following code into a C program and explain what it does.

 MOV r2, #1 ; r2 = 1
 MOV r1, #1 ; r1 = 1

loop CMP r1, r0 ; compare r1 to r0. In this case, r0 is our input variable.
 BGT done ; If r1 is greater than r0 go to “done”
 ; If r1 is less or equal to r0 the following lines will run.
 MUL r2, r1, r2 ; r2 = r2*r1
 ADD r1, r1, #1 ; r1 = r1 + 1
 B loop ; go back to “loop”

done MOV r0, r2 ; When r1 is greater than r0, store the result r2 in r0

Variables are initialized.

Homework 4 – Chapter 6 – Exercise 1

58

 Translate the following code into a C program and explain what it does.

 MOV r2, #1 ; r2 = 1
 MOV r1, #1 ; r1 = 1

loop CMP r1, r0 ; compare r1 to r0. In this case, r0 is our input variable.
 BGT done ; If r1 is greater than r0 go to “done”
 ; If r1 is less or equal to r0 the following lines will run.
 MUL r2, r1, r2 ; r2 = r2*r1
 ADD r1, r1, #1 ; r1 = r1 + 1
 B loop ; go back to “loop”

done MOV r0, r2 ; When r1 is greater than r0, store the result r2 in r0

Variables are initialized.

This represents a for or a while loop:

“while r1 is less or equal to r0” do r2 = r2*r1”

Homework 4 – Chapter 6 – Exercise 1

59

 Translate the following code into a C program and explain what it does.

 MOV r2, #1 ; r2 = 1
 MOV r1, #1 ; r1 = 1

loop CMP r1, r0 ; compare r1 to r0. In this case, r0 is our input variable.
 BGT done ; If r1 is greater than r0 go to “done”
 ; If r1 is less or equal to r0 the following lines will run.
 MUL r2, r1, r2 ; r2 = r2*r1
 ADD r1, r1, #1 ; r1 = r1 + 1
 B loop ; go back to “loop”

done MOV r0, r2 ; When r1 is greater than r0, store the result r2 in r0

Variables are initialized.

This represents a for or a while loop:

“while r1 is less or equal to r0” do r2 = r2*r1”

Return statement.

Homework 4 – Chapter 6 – Exercise 1

60

 Translate the following code into a C program and explain what it does.

 MOV r2, #1
 MOV r1, #1

loop CMP r1, r0
 BGT done
 MUL r2, r1, r2
 ADD r1, r1, #1
 B loop

done MOV r0, r2

int factorial(int r0){
int r1;
int r2 = 1;

for(r1 = 1; r1 <= r0; r1++){
r2 = r2*r1;

}

return r2;
}

Homework 4 – Chapter 6 – Exercise 4

61

AREA myData, DATA
array DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

Homework 4 – Chapter 6 – Exercise 4

62

AREA myData, DATA
array DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

Your code should perform this operation!

The memory addresses

of our array can be

accessed by using these

labels. So, we don’t

need to know the

exactly memory

location of the array

elements.

Homework 4 – Chapter 6 – Exercise 4

63

AREA myData, DATA
array DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

The summation indicates to us that we

are going to perform some kind of

loop.

Homework 4 – Chapter 6 – Exercise 4

64

Accessing an array in assembly can be found in the textbook section 5.4.4, page 105.

Homework 4 – Chapter 6 – Exercise 4

65

AREA myData, DATA, READWRITE
ALIGN

array DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

AREA myCode, CODE, READONLY
EXPORT __main
ALIGN
ENTRY

__main PROC
LDR r0, =size
LDR r1, [r0] ; r1 = 10
LDR r0, =array
LDR r2, [r0], #4 ; r2 = a_1 --> get the first position of the array

MOV r3, #1 ; We are going to use r3 as our counter in the loop
MOV r4, #0 ; The summation will be stored in r4

loop CMP r3, r1 ; Loop while r3 is less than r1 (10)
BGT done ; If r3 is greater than r1 (10), we're done

MUL r5, r2, r2 ; r5 = a_i * a_i
MUL r5, r5, r2 ; r5 = r5 * a_i --> r5 = a_i*a_i*a_i
ADD r4, r5 ; Add the cube operation to the summation (r4)

LDR r2, [r0], #4 ; get the next array element

ADD r3, #1 ; Increment r3 by 1

B loop
ENDP

done B done ; dead loop

END

Solution using ARM

Assembly.

The one from the book.

Only works with the Keil

uVision IDE!

Note: This IDE is not

being used in our labs!

Homework 4 – Chapter 6 – Exercise 4

66

Solution using GNU

Assembly.

The only kind of

assembly that works with

the System Workbench

for STM32 used in our

labs!

.syntax unified

.cpu cortex-m4

.fpu softvfp

.thumb

.section .data
array: .word 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size: .word 10

.section .text

.global main

main:
 LDR r0, =size
 LDR r1, [r0] // r1 = 10

 LDR r0, =array
 LDR r2, [r0], #4 // r2 = a_1 --> get the first position of the array

 MOV r3, #1 // We are going to use r3 as our counter in the loop
 MOV r4, #0 // The summation will be stored in r4

loop:
 CMP r3, r1 // Loop while r3 is less than r1 (10)
 BGT done // If r3 is greater than r1 (10), we are done
 MUL r5, r2, r2 // r5 = a_i * a_i
 MUL r5, r5, r2 // r5 = r5 * a_i
 ADD r4, r5 // Add the cube operation to the summation (r4)
 LDR r2, [r0], #4 // get the next array element
 ADD r3, #1 // Increment r3 by 1

 B loop

done:
 B done // dead loop

Look the textbook

Appendix A to learn more

how to translate from one

to another.

Chapter 7

67

Chapter 7 – Exercise 1

68

 Write an assembly program that converts all characters of a string to upper

case. AREA myData, DATA, READWRITE
ALIGN

array DCB "caPitalizeme",0

AREA myCode, CODE, READONLY
EXPORT __main
ALIGN
ENTRY

__main PROC
LDR r0, =array
LDRB r4, [r0] ; Load string into memory

loop
CMP r4, #97 ; Compare to see if we have a cap or a lower case
BLT next
SUBS r4, r4, #32 ; Subtract 32 if we have a lower case
STRB r4, [r0] ; Store that in the original string

next
ADD r0, r0, #1 ; Move to next byte
LDRB r4, [r0]
CMP r4, #0 ; Look for null terminator
BNE loop

done
B done
ENDP

END

Hint:
Use the ASCII

table

Chapter 7 – Exercise 9

69

 Write an assembly program that checks whether an integer is a square of some integer. For example,

25 = 52. ; Input Register: R1
 ; If square, then R2 = sqrt(R1)
 ; If not, then R2 = -1;
 AREA prime, CODE, READONLY
 EXPORT __main
 ALIGN
 ENTRY

__main PROC
 MOV R1, #25 ; r1 is our input
 MOV R3, #1 ; We will use r3 to perform the square operation

doOver
 ADD R3, R3, #1 ; Increment r3
 MUL R4, R3, R3 ; Perform r4 = r3*r3
 CMP R4, R1 ; Is r4 >= r1?
 BEQ isSquare ; If r4 is equal to r1, than we found the square root of r1
 BGT itsNot ; If r4 is greater than r1, than r1 is not a square of an integer
 BLT doOver ; If r4 is less than r1, increment r3 and try again

isSquare
 MOV R2, R3 ; If R1 is a square of an integer, put the square root of r1 into r2
 B done ; Go to the dead loop

itsNot
 MOV R2, #0 ; If R1 is NOT a square of an integer,
 SUB R2, R2, #1 ; then make r2 equal to -1

done B done ; Dead loop
 ENDP
 END

Homework 5

70

Homework 5 - Chapter 7 – Exercise 5

71

 Write an assembly program that removes all vowel letters (a, e, i, o, u, A, E, I,

O, U) from a string.

72

.syntax unified

.cpu cortex-m4

.fpu softvfp

.thumb

.section .data
input_str:
 .ascii "The quick brown fox jumps over the lazy dog\0"

output_str:
 .ascii "\0"

.section .text

.global main

main:
 LDR r0, =input_str
 LDRB r1, [r0] // r1 is going to be our original string

 LDR r3, =output_str
 LDRB r2, [r3] // r2 is going to be our destination string

checkIsLetter:
 CMP r1, #0x00
 BEQ almost_done // If r1 is equal to 0x00, this is the end of the string

 CMP r1, #0x41
 BLT nextChar_withCopy // If it is less than 0x41, the char is not a letter

 CMP r1, #0x5B
 BLT capLetter // If it is greater than or equal to 0x41 AND less than 0x5B, the char is a capitalized letter

 CMP r1, #0x61
 BLT nextChar_withCopy // If it is greater than or equal to 0x5B AND less than 0x61, the char is not a letter

 CMP r1, #0x7B
 BLT smallLetter // If it is greater than or equal to 0x61 AND less than 0x7B, the char is a small letter
 BGE nextChar_withCopy // If it is greater than or equal to 0x7B, the char is not a letter

73

nextChar_withCopy:
 MOV r2, r1
 STRB r2, [r3] // If it is not a vowel, just copy the char to our destination string.
 ADD r3, r3, #1 // Update the memory address of out destination char.

nextChar:
 ADD r0, r0, #1 // Move to the next char in the string
 LDRB r1, [r0]
 B checkIsLetter

capLetter:
 ADD r1, r1, #32 // If the char is a capitalized letter, convert to small letter by adding 32 (decimal)
 B checkIsLetter

smallLetter:
 CMP r1, #0x61 // r1 = 'a'
 BEQ isVowel
 CMP r1, #0x65 // r1 = 'e'
 BEQ isVowel
 CMP r1, #0x69 // r1 = 'i'
 BEQ isVowel
 CMP r1, #0x6F // r1 = 'o'
 BEQ isVowel
 CMP r1, #0x75 // r1 = 'u'
 BEQ isVowel
 B notVowel

isVowel:
 B nextChar

notVowel:
 B nextChar_withCopy

almost_done:
 ADD r3, r3, #1
 MOV r2, #0x00
 STRB r2, [r3]

done:
 B done // dead loop

.end

Homework 5 - Chapter 7 – Exercise 7

74

 Write an assembly program that checks whether an unsigned number is a prime

number or not.

Homework 5 - Chapter 7 – Exercise 7

75

.syntax unified

.cpu cortex-m4

.fpu softvfp

.thumb

.section .text

.global main

main:
 MOV r1, #31 // r1 will be used as our input
 MOV r2, #1 // r2 will be our result.
 // At the end of the program:
 // If r2 = 1, then the number IS prime.
 // If r2 = 0, then the number is NOT prime.

 MOV r3, #2 // r3 will be used as a counter.

testPrime:
 CMP r3, r1
 BEQ done // If r3 = r1, we done with the program.
 UDIV r4, r1, r3 // r4 = r1 / r3 (only the integer part)
 MUL r4, r3 // r4 = r4*r3
 CMP r4, r1
 BNE notPrimeYet
 MOV r2, #0 // The division and multiplication gave us the original number.
 B done // Therefore, the number is NOT prime and r2 will be 0,
 // and we are done with the program.

notPrimeYet:
 ADD r3, #1 // Test another integer to perform the division and multiplication.
 B testPrime

done:
 B done

.end

Homework 5 - Chapter 7 – Exercise 12

76

Homework 5 - Chapter 7 – Exercise 12

77

.syntax unified

.cpu cortex-m4

.fpu softvfp

.thumb

.data
size:
 .word 10
array:
 .word 10,20,30,40,50,60,70,80,90,100

.text

.global main

main:
 LDR r2, =size
 LDR r2, [r2] // r2 = size of the array
 LDR r3, =array // r3 = memory address of the array

 // 1st) Let's compute the mean
 MOV r7, #0 // loop index
 MOV r0, #0 // summation
 B check_mean // Let's loop over the entire array

loop_mean:
 LDR r4, [r3, r7, LSL #2] // r6 = array(i), where r7 = i
 ADD r0, r0, r4 // r0 = r0 + array(i) --> Summation
 ADD r7, r7, #1 // Update the loop index --> r7 = i + 1

check_mean:
 CMP r7, r2 // While i <= array_size,
 BLT loop_mean // keep summing the array elements

 // If i > array_size, summation is done.
 // Let's divide by the size of the array to obtain the mean.
 UDIV r0, r0, r2 // r0 = (r0 / array_size) --> mean

 // 2nd) Let's compute the variance
 MOV r7, #0 // loop index
 MOV r1, #0 // sum of squares
 B check_variance

loop_variance:
 LDR r4, [r3, r7, LSL #2] // r6 = array(i), where r7 = i
 SUB r5, r4, r0 // r5 = array(i) - mean
 MLA r1, r5, r5, r1 // r1 = r1 + (array(i) - mean)^2 --> Multiple and accumulate
 ADD r7, r7, #1 // Update the loop index --> r7 = i + 1

check_variance:
 CMP r7, r2 // While i <= array_size,
 BLT loop_variance // keep adding (array(i) - mean)^2

 // If i > array_size, summation is done.
 // Let's divide by the size of the array to obtain the variance.
 UDIV r0, r1, r2 // r0 --> Variance

stop:
 B stop // Dead Loop

.end

Homework 6 (variations)

78

Homework 6 - Chapter 8 – Exercise 1

79

 “PUSH {r3}” is equivalent to what?

 Cortex-M processors uses full descending stack.

 It means, r3 will be pushed in the memory position indicated by the stack pointer, and

the stack pointer will be decreased by 4.

Homework 6 - Chapter 8 – Exercise 4

80

 How many byte does the stack need to pass the arguments when each of the

following function is called?

 int32_t fun1(uint8_t a, uint16_t b, uint8_t c, int32_t d)

 Hint: Page 169

 In this case, we don’t need to use the stack to pass the
arguments:

 a -> r0

 b -> r1

 c -> r2

 d -> r3

Homework 6 - Chapter 8 – Exercise 5

81

 Which register(s) holds the return value in the following functions?

 int16_t fun1()

 Hint: Page 169

 The return only needs 16 bits. So, we only need r0 to hold the
return argument.

 Note: some functions in this question return a pointer to a
memory address.

Homework 6 - Chapter 8 – Exercise 17-ish

82

83

.syntax unified

.cpu cortex-m4

.fpu softvfp

.thumb

.data
result:
 .word 0
constants:
 .word 2, 5

.text

.global main

.func computeFunction

main:
 MOV r0, #2 // 1st argument --> x
 MOV r1, #3 // 2nd argument --> y

 BL computeFunction

 // Let's put the result in the memory
 LDR r1, =result
 STR r0, [r1]

stop:
 B stop // Dead Loop

computeFunction:
 LDR r2, =constants

 LDR r3, [r2] // r3 = b --> b = 2
 LDR r4, [r2, #4] // r4 = c --> c = 5

 // f(x, y) = b*x*y + c
 MUL r5, r0, r1 // r5 = x*y
 MUL r5, r5, r3 // r5 = b*r5
 ADD r5, r5, r4 // r4 = r5 + c

 MOV r0, r5 // return value is stored in r0

 BX LR
.endfunc
.end

 AREA myData, DATA, READWRITE
 ALIGN
result DCD 0
constants DCD 2, 5

 AREA myCode, CODE, READONLY
 EXPORT __main
 ALIGN
ENTRY

__main PROC
 MOV r0, #2 ; 1st argument --> x
 MOV r1, #3 ; 2nd argument --> y

 BL computeFunction

 ; Let's put the result in the memory
 LDR r1, =result
 STR r0, [r1]

stop
 B stop ; Dead Loop

 ENDP

computeFunction PROC
 LDR r2, =constants

 LDR r3, [r2] ; r3 = b --> b = 2
 LDR r4, [r2, #4] ; r4 = c --> c = 5

 ; f(x, y) = b*x*y + c
 MUL r5, r0, r1 ; r5 = x*y
 MUL r5, r5, r3 ; r5 = b*r5
 ADD r5, r5, r4 ; r4 = r5 + c

 MOV r0, r5 ; return value is stored in r0

 BX LR
 ENDP

 END

GNU Assembly ARM Assembly

	1 - Professor: Dr. Yanmin Gong
TAs: Francisco Fernandes
Khuong Nguyen
	2 - Homework 3
	3 - Homework 3 – Question 1
	4 - Homework 3 – Question 2
	5 - Homework 3 – Question 3
	6 - Homework 3 – Question 3
	7 - Homework 3 – Question 3
	8 - Homework 3 – Question 3
	9 - Homework 3 – Question 3
	10 - Homework 3 – Question 3
	11 - Homework 3 – Question 3
	12 - Homework 3 – Question 3
	13 - Homework 3 – Question 3
	14 - Homework 3 – Question 3
	15 - Homework 3 – Question 4 – Item A
	16 - Homework 3 – Question 4 – Item A
	17 - Homework 3 – Question 4 – Item A
	18 - Homework 3 – Question 4 – Item A
	19 - Homework 3 – Question 4 – Item B
	20 - Homework 3 – Question 4 – Item B
	21 - Homework 3 – Question 4 – Item B
	22 - Homework 3 – Question 4 – Item B
	23 - Homework 3 – Question 4 – Item B
	24 - Homework 3 – Question 4 – Item B
	25 - Homework 3 – Question 4 – Item B
	26 - Homework 3 – Question 4 – Item B
	27 - Homework 3 – Question 4 – Item B
	28 - Homework 3 – Question 4 – Item B
	29 - Homework 3 – Question 4 – Item B
	30 - Homework 3 – Question 4 – Item B
	31 - Homework 3 – Question 4 – Item B
	32 - Homework 3 – Question 4 – Item B
	33 - Homework 3 – Question 4 – Item B
	34 - Homework 3 – Question 4 – Item B
	35 - Homework 3 – Question 4 – Item B
	36 - Homework 4
	37 - Homework 4 – Chapter 5 – Exercise 3
	38 - Homework 4 – Chapter 5 – Exercise 3
	39 - Homework 4 – Chapter 5 – Exercise 3
	40 - Homework 4 – Chapter 5 – Exercise 3
	41 - Homework 4 – Chapter 5 – Exercise 3
	42 - Homework 4 – Chapter 5 – Exercise 3
	43 - Homework 4 – Chapter 5 – Exercise 3
	44 - Homework 4 – Chapter 5 – Exercise 3
	45 - Homework 4 – Chapter 5 – Exercise 3
	46 - Homework 4 – Chapter 5 – Exercise 3
	47 - Homework 4 – Chapter 5 – Exercise 3
	48 - Homework 4 – Chapter 5 – Exercise 3
	49 - Homework 4 – Chapter 5 – Exercise 3
	50 - Homework 4 – Chapter 5 – Exercise 3
	51 - Homework 4 – Chapter 5 – Exercise 3
	52 - Homework 4 – Chapter 5 – Exercise 3
	53 - Homework 4 – Chapter 6 – Exercise 1
	54 - Homework 4 – Chapter 6 – Exercise 1
	55 - Homework 4 – Chapter 6 – Exercise 1
	56 - Homework 4 – Chapter 6 – Exercise 1
	57 - Homework 4 – Chapter 6 – Exercise 1
	58 - Homework 4 – Chapter 6 – Exercise 1
	59 - Homework 4 – Chapter 6 – Exercise 1
	60 - Homework 4 – Chapter 6 – Exercise 1
	61 - Homework 4 – Chapter 6 – Exercise 4
	62 - Homework 4 – Chapter 6 – Exercise 4
	63 - Homework 4 – Chapter 6 – Exercise 4
	64 - Homework 4 – Chapter 6 – Exercise 4
	65 - Homework 4 – Chapter 6 – Exercise 4
	66 - Homework 4 – Chapter 6 – Exercise 4
	67 - Chapter 7
	68 - Chapter 7 – Exercise 1
	69 - Chapter 7 – Exercise 9
	70 - Homework 5
	71 - Homework 5 - Chapter 7 – Exercise 5
	72 - Slide72
	73 - Slide73
	74 - Homework 5 - Chapter 7 – Exercise 7
	75 - Homework 5 - Chapter 7 – Exercise 7
	76 - Homework 5 - Chapter 7 – Exercise 12
	77 - Homework 5 - Chapter 7 – Exercise 12
	78 - Homework 6 (variations)
	79 - Homework 6 - Chapter 8 – Exercise 1
	80 - Homework 6 - Chapter 8 – Exercise 4
	81 - Homework 6 - Chapter 8 – Exercise 5
	82 - Homework 6 - Chapter 8 – Exercise 17-ish
	83 - Slide83

