ENSC 3213

Homework Review

Professor: Dr. Yanmin Gong
TAs: Francisco Fernandes
Khuong Nguyen

Spring 2019

Homework 3

Homework 3 — Question 1

» The default attribute of the CODE section of an assembly code is:
» Read Only
» Write Only

» Read and Write
AREA myData, DATA, READWRITE ; Define a data section
4 None Of above Array bcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section
EXPORT __main Make _ main visible to the Linker

J
ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of subroutine
cee ; Assembly program starts here
ENDP ; Mark the end of a subroutine
END ; Mark the end of a program

Table 3-3. Skeleton of an ARM assembly program.
Textbook page 69

Homework 3 — Question 2

» The default attribute of the DATA section of an assembly code is:
» Read Only
» Write Only

» Read and Write
AREA myData, DATA, READWRITE ; Define a data section
» None Of above Array bcb 1, 2, 3, 4, 5 ; Define an array with five integers

AREA myCode, CODE, READONLY ; Define a code section
EXPORT __main Make _ main visible to the Linker

J
ENTRY ; Mark the entrance to the entire program
__main PROC ; PROC marks the beginning of subroutine
cee ; Assembly program starts here
ENDP ; Mark the end of a subroutine
END ; Mark the end of a program

Table 3-3. Skeleton of an ARM assembly program.
Textbook page 69

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM

processor 1s Little Endian by default.

. First byte . Last byte
Endian (lowest ad}:iress) Middle bytes (highest agdress)
big most significant least significant
little least significant most significant
Memory Address Memory Data

0x8000 OxEE

0x8001 0x8C

0x8002 0x90

0x8003 0xA’7

0x8004 OxFF

By default setting, the word stored at address 0x8000 1s: A7 90 8C EE

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM

processor 1s Little Endian by default.

. First byte . Last byte
Endian (lowest ad}:iress) Middle bytes (highest agdress)
big most significant least significant
little least significant most significant
Memory Address Memory Data
0x8000 OxEE
0x8001 0x8C
0x8002 0x90
0x8003 0xA’7
LittlelEndian 0x8004 OxFF
l I

By default setting, the word stored at address 0x8000 1s: A7 90 8C EE

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

. First byte . Last byte
Endian (lowest ad}:iress) Middle bytes (highest agdress)
big most significant least significant
little least significant most significant
Memory Address Memory Data
0x8000 OxEE
0x8001 0x8C
0x8002 0x90
0x8003 0xA’7
LittlelEndian 0x8004 OxFF
l I

By default setting, the word, stored at address 0x8000 1s: A7 90 8C EE

“““““““““““““““““ 32 bits or 4 bytes T

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

. First byte . Last byte
Endian (lowest ad}:iress) Middle bytes (highest agdress)
big most significant least significant
little least significant most significant
Memory Address Memory Data
0x8000 OxEE
0x8001 0x8C
0x8002 0x90
0x8003 0xA’7
LittlelEndian 0x8004 OxFF

l I
By default setting, the word, stored at address 0x8000 1s: A7 90 8C EE

Byte 2

Byte 3 Byte 1 | Byte 0

32 bits or 4 bytes

Last byte

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

. First byte . Last byte
Endian (lowest ad}:iress) Middle bytes (highest agdress)
big most significant least significant
little least significant most significant
Memory Address Memory Data .
08000 OxEE will always follow
0x8001 0x8C .
this structure for
Ox8002 0x90 either little or big
0x8003 0xA’7 .
Little Endian 0x8004 0xFF endian

I
l I

By default setting, the word, stored at address 0x8000 1s: A7 90 8C EE
Byte3 | Byte2 | Bytel | ByteO |/ .

----------------------------- 32 bits or 4 bytes

Last byte 15t byte

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

. First byte . Last byte
Endian (lowest address) Middle bytes (highest address)
big most significant least significant
little least significant most significant
_ | Memory Address Memory Data
0x8000 O0xEE
0x8001 0x8C
4 bytes 0x8002 0x90
i 0x8003 0xA7
Little Endian 0x8004 OxFF
|

l I

By default setting, the word, stored at address 0x8000 1s: A7 90 8C EE
Byte O | —/ .

----------------------------- 32 bits or 4 bytes

A word (32 bits)
will always follow
this structure for
either little or big
endian

Byte 3

Byte 2

Byte 1

Last byte

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

. First byte . Last byte
Endian (lowest address) Middle bytes (highest address)
big most significant least significant
little least significant most significant
_ | Memory Address Memory Data
0x8000 O0xEE
0x8001 0x8C
4 bytes 0x8002 0x90
i 0x8003 0xA7
Little Endian 0x8004 OxFF
|
l I

5t byte.

» It will not be included in

the answer

By default setting, the word, stored at address 0x8000 1s: A7 90 8C EE

32 bits or 4 bytes

‘N

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

. First byte . Last byte

Endian (lowest ad}:iress) Middle bytes (highest agdress)

big most significant least significant

little least significant most significant

Memory Address Memory Data

Least significant < 0x8000 0xEE
0x8001 0x8C
0x8002 0x90
Most significant 0x8003 0xA7
0x8004 OxFF

By default setting, the word stored at address 0x8000 1s: A7 90 8C EE

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

Endian (lovfézztazﬁt:ess) Middle bytes (higlllljsstt :g;iess)
big most significant least significant
little least significant most significant
Memory Address Memory Data
Least significant < 0x8000 0xEE
0x8001 0x8C Last byte:
0x8002 0x90 Most significant
Most significant 0x8003 0xA7
0x8004 OxFF

By default setting, the word stored at address 0x8000 is: A7 90 8C EE’

1%t byte:
Least significant

—

Homework 3 — Question 3

» Most ARM processors support both Big Endian and Little Endian. ARM
processor 1s Little Endian by default.

. First byte . Last byte

Endian (lowest ad}:iress) Middle bytes (highest agdress)

big most significant least significant

little least significant most significant

Memory Address Memory Data

0x8000 OxEE
0x8001 0x8C
Last byte: 0x8002 0x90
Least significant 0x8003 OxA7

\ 0x8004 0xEFF

In Big Endian? EE 8C 90 A7T~— I*byte
Most significant

Homework 3 — Question 4 — Item A

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0xEB
0x8001 0x2C
0x8000 Ox1A

» What is the value of r1 after running LDR rl1, [r@] if the system is little
endian or big endian?

Homework 3 — Question 4 — Item A

» Suppose r@ = 0x8000, and the memory layout is as follows:

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0xEB
0x8001 0x2C
0x8000 Ox1A

» What is the value of r1 after running LDR r1, [r@] if the system is little
endian or big endian? K

This instruction will load a word (32
- bits) from the memory data starting
from address ro.

Homework 3 — Question 4 — Item A

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

Address Data

y 0x8007 0x79

9x8000 in this case will be used as a 0x3006 0xCD
memory address. r@ DOES NOT 0x8005 UxA3
represent data in this context! 0x8004 OxFD
0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 Ox1A

» What is the value of r1 after running LDR r1, [r@] if the system is little
endian or big endian? K

This instruction will load a word (32
- bits) from the memory data starting
from address ro.

Homework 3 — Question 4 — Item A

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 OxFD
Most significant < 0x8003 0x0D
0x8002 0xEB
0x8001 0xaC__| [4 Dbytes
Least significant < 0x8000 0x1A Last byte:
r Most significant
In Little Endian: o 15t byte:
n Little Endian: rl = 6D EB 2C 1A« Least significant
Last byte:
Least significant \
. . ' 15t byte:
;_“1_8 ____________________________________ In Blg Endian: rli = 1A 2C EB QD™ Most significant

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0xEB
0x8001 0x2C
0x8000 Ox1A

» Suppose the system 1s set as little endian. What are the values of r1 and ro if the

instructions are executed separately?
» LDR ri, [ro, #4] K‘ This means that one instruction does

_ not affect the other. So, when you run
» LDR ril, - re], #4 the next instruction, r1 and ro will be
» LDR rl, [rO, #4]! reinitialized.

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0xEB
0x8001 0x2C
0x8000 Ox1A

» Suppose the system 1s set as little endian. What are the values of r1 and ro if the
instructions are executed separately?
» LDR rl, [ro, #4] ~

» LDR r1, [re], #4 — Let’s look them one by one!
» LDR rl, [rO, #4]!

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

» LDR rl, [rO, #4] \ In this case, we are accessing the
memory data using the pre-index

mode

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0xEB
0x8001 0x2C
0x8000 Ox1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout is as follows:
» LDR rl, [rO, #4] \ In this case, we are accessing the
memory data using the pre-index

mode

It means we are going to load the
memory data from address ré + 4

. Address Data
into 1. 0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0OxEB
0x8001 0x2C
0x8000 Ox1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR rl, [rO, #4] \ In this case, we are accessing the
memory data using the pre-index

mode

It means we are going to load the
memory data from address ré + 4

: Address Data

o ri. 0x8007 0x79

In the pre-index mode ro will NOT 0x8006 0xCD
be modified. 0x8005 UxA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 Ox1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR rl, [ro, #4]

Address Data

The instruction 0x8007 0x79
will start 0x8006 0xCD
loading data P 0x8005 0xA3
from this " ° 0x8004 0xFD
0x8003 0x0D

memory address 0x3002 OxER
nto rl 0x8001 0x2C

ro « 0x8000 0x1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR rl, [ro, #4]

Address Data
The instruction 0x8007 0x79 » Most significant
will start 0x8006 0xCD
loading data 0 4+ 4 - 0x8005 0xA3 » Least sionificant
from this ——r ‘ 0x8004 0xFD » east significan
memory address 0x3003 0x0D
) 0x8002 0xEB
mto rl 0x8001 0x2C
ro 0x3000 0x1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR rl, [ro, #4]

Solution:
ro = 9x8000 » 10 is unchanged!

ri=79 CD A3 FD

Address Data
The instruction 0x8007 0x79 * Most significant
will start 0x8006 0xCD
loading data o s 4 - 0x8005 0xA3 Least siomificant
from this) 0x8004 0xFD ’ east significan
memory address 0x8003 0x0D
- 0x8002 0xEB
into 0x8001 0x2C
ro < 0x8000 0x1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

» LDR rl, [rO], #4 \ In this case, we are accessing the
memory data using the post-index

mode

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0xEB
0x8001 0x2C
0x8000 Ox1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

» LDR rl, [rO], #4 \ In this case, we are accessing the
memory data using the post-index

mode

It means we are going to load the
memory data from address ré into

ri. Address Data

0x8007 0x79

After loading, ro is updated to 0x8006 0xCD
become ro + 4. 0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0OxEB

0x8001 0x2C

0x8000 Ox1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR r1, [ro], #4

Address Data

0x8007 0x79

. 0x8006 0xCD

After loading, 0x8005 O);(A3
ro i1s updated to < ro < 0x8004 0xFD
Ox8000 + 4 0x8003 0x0D
First, load a 0x8002 OxEB

< 0x8000 0x1A

data starting
from the initial
re (0x8000).

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR r1, [ro], #4

Address Data
0x8007 0x79
: 0x8006 0xCD
After loading, 0x8005 0xA3
ro i1s updated to < ro < 0x8004 0xFD
Ox8000 + 4 0x8003 0x0D » Most significant
First, load a 0x8002 0xEB
- 0x8001 0x2C
word (32 bit) 0x3000 0x1A » Least significant

data starting
from the initial
re (0x8000).

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR r1, [ro], #4

Solution:
ro = 0x8004 >rée =ro + 4
rl = 6D EB 2C 1A
Address Data
0x8007 0x79
: 0x8006 0xCD
After loading, 0x8005 0xA3
ro i1s updated to < ro < 0x8004 0xFD
Ox8000 + 4 0x8003 0x0D » Most significant
First, load a 0x8002 0xEB
- 0x8001 0x2C
word (32 bit) 0x3000 0x1A » Least significant

data starting
from the initial
re (0x8000).

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

» LDR rl, [rO, #4] !\ In this case, we are accessing the
memory data using the pre-index with

update mode.

Address Data
0x8007 0x79
0x8006 0xCD
0x8005 0xA3
0x8004 0xFD
0x8003 0x0D
0x8002 0xEB
0x8001 0x2C
0x8000 Ox1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:

» LDR rl, [rO, #4] !\ In this case, we are accessing the
memory data using the pre-index with

update mode.

It means we are going to load the
memory data from address ré + 4

. Address Data

mto . 0x8007 0x79

After loading, ro is also updated to 0x8006 0xCD
become ro + 4. 0x8005 0xA3

0x8004 0xFD

0x8003 0x0D

0x8002 0xEB

0x8001 0x2C

0x8000 Ox1A

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR rl, [ro, #4]!

after loading

I

Address Data
The instruction ro 0x8007 0x79 > Most significant
will start \ 0x8006 0xCD
: 0x8005 0xA3
log,il;llgﬂi?a — 7o + 4 < =~ 0x8004 0xFD » Least significant
memory address 0x8003 0x0D
) 0x8002 0xEB
mnto rl 0x8001 0x2C
ro < 0x3000 0x1A

l

before loading

Homework 3 — Question 4 — Item B

» Suppose r@ = 0x8000, and the memory layout 1s as follows:
» LDR rl, [ro, #4]!

Solution:
ro = 0x8004 »ro =ro + 4
after loading rli =79 CD A3 FD

L Address Data
The instruction r 0x8007 0x79 » Most significant

will start 0x8006 0xCD
loading data 0 4+ 4 - - 0x8005 0xA3 » Least sionificant
from this ——r ‘ 8x§88431 gxgg » east significan

X X

mem.m;y adldress 0x8002 0xEB

mnto-r 0x8001 0x2C

ro < 0x8000 0x1A

l

before loading

Homework 4

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory

are 1nitialized to @x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor

uses little endian.

STR r1, [ro], #4
STR r1, [rO, #4]!

STR r1, [rO, 4]

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory

are 1nitialized to ©x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor

uses little endian. , ,
In this case, each line of code
is NOT independent of each

STR rl, [re], #4 other. We should consider

STR rl1, [ro, #4]! these three lines as a single
rogram.

STR rl1, [rO, 4] pros

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = Ox12345678. All bytes in memory
are initialized to ©x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor
uses little endian.

Address Data
STR r1, [re], #4 0x20000007
STR r1, [re, #4]! 0x20000006
0x20000005
In this case, all memory STR rl1, [rO, 4] *

positions will start empty or » 0x20000004

equal to 0x00. / 0x20000003
N

0x20000002

0x20000001

0x20000000

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory

are 1nitialized to @x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Another important thing to STR rl1, [ro], #4
note is that r1 already
contains some data and we are
going to store this data back in STR r1, [r@, 4]
the memory using the STR
instruction.

STR r1, [rO, #4]!

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory

are 1nitialized to @x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Post-Index:
STR rl, [ro], #4 > First, it stores rl in the memory
address of r@. Then, it updates ro
STR rl, [ro, #4]! toro + 4.
STR rl1, [rO, 4]

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory

are 1nitialized to @x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor

uses little endian.

Post-Index:
STR rl, [ro], #4 > First, it stores rl in the memory
address of r@. Then, it updates ro
STR rl1, [ro, #4]! toro + 4.
STR rl1, [rO, 4]
Last byte:
Most significant 1% byte:
Least significant This word (32 bits)
will be stored in

rl = l12 34 56 78,'4-—/ " memory, starting
from address
k f 0x20000000

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory
are 1nitialized to @x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor
uses little endian.

Post-Index:
STR r1, [re], #4 > First, it stores rlin the memory
Add Dat ’ ’ ’
ress ala | address of ro. Then, it updates ro
OX20000007 STR rl, [ro, #4]! toro + 4.
0Xx20000006 STR r1, [ro, 4]
0Xx20000005
0Xx20000004
©x20000003 12 » Most significant
0Xx20000002 34
0Xx20000001 56
ro > 0x20000000 78 » Least significant

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory
are 1nitialized to @x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor
uses little endian.

Post-Index:
STR r1, [re], #4 > First, it stores r1l in the memory
Address Data address of r@. Then, it updates ro
OX20000007 STR r1, [ro, #4]! toro + 4
0Xx20000006 STR r1, [ro, 4]
PX20000005
ro L, ©X20000004 -
PX20000003 12 Now. 10 is
PX20000002 34 | upda,ted to
PX20000001 56 Ox20000004
PX20000000 78

Homework 4 — Chapter 5 — Exercise 3

» Suppose r@ = 0x20000000 and r1 = 0x12345678. All bytes in memory
are 1nitialized to @x00. Suppose the following assembly program has been
executed successfully. Draw a table to show the memory value if the processor
uses little endian.

Pre-index with update:

STR rl ro], #4 First, it stores rl in the memor
Address Data > ol adilress of ro + 4. Then, it ’
0x20000007 STR r1, [ro, #4]! " updates ro to ro + 4.
0x20000006 STR rl, [rO, 4]
0x20000005
ro > 0X20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

Homework 4 — Chapter 5 — Exercise 3

STR ri,

STR ri,
STR ri,

[rO], #4
[ro, #4]!
[re, 4]

Address

Data

0X20000012

0X20000011

0X20000010

0X20000009

ro + 4 —

> 0X20000008

0X20000007

0X20000006

0X20000005

ro

> 0X20000004

0X20000003

12

0X20000002

34

0X20000001

56

0X20000000

78

Pre-index with update:
First, it stores rl in the memory
address of r@ + 4. Then, it
updates ro toro + 4.

Homework 4 — Chapter 5 — Exercise 3

STR rl, [ro], #4
STR r1, [ro, #4]!
STR r1, [ro, 4]

Address Data
0x2000000C
0x2000000B 12
0X2000000A 34
0x20000009 56

ro + 4 —» 0x20000008 78
0x20000007
0Xx20000006
0x20000005

ro > 0xX20000004
0x20000003 12
0x20000002 34
0x20000001 56
0Xx20000000 78

Most significant

Least significant

Pre-index with update:
First, it stores rl in the memory
address of rO + 4. Then, it
updates ro toro + 4.

rg —

Homework 4 — Chapter 5 — Exercise 3

STR rl, [ro], #4
STR r1, [ro, #4]!
STR r1, [ro, 4]

-\

Address Data
0x2000000C
0x2000000B 12
0X2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0Xx20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0Xx20000000 78

Now, ro is
updated to
0x20000008

Pre-index with update:
First, it stores rl in the memory
address of rO + 4. Then, it
updates ro toro + 4.

rg —

Homework 4 — Chapter 5 — Exercise 3

STR ri,

STR ri,
STR ri,

[rO], #4
[rO, #4]!
[re, 4]

Address Data
0x2000000C
0x2000000B 12
0X2000000A 34
0x20000009 56
0x20000008 78
0x20000007
0Xx20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0Xx20000000 78

>

Pre-index:
First, it stores rl in the
memory address of r0 + 4,
and ro remains unchanged.

Homework 4 — Chapter 5 — Exercise 3

STR rl, [ro], #4
STR r1, [ro, #4]!
STR r1, [ro, 4]

Address Data
0x20000010
OX2000000F
OX2000000E
0x2000000D
re + 4 —=»0x2000000C
0x2000000B 12
OX2000000A 34
0x20000009 56
rQ =—— 0X20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

Most significant

Least significant

>

Pre-index:
First, it stores rl in the
memory address of r0 + 4,
and ro remains unchanged.

Homework 4 — Chapter 5 — Exercise 3

STR rl, [ro], #4
STR r1, [ro, #4]!
STR r1, [ro, 4]

>

Address Data
0x20000010
OX2000000F 12
OX2000000E 34
0x2000000D 56
re + 4 —=»0x2000000C 78
0x2000000B 12
OX2000000A 34
0x20000009 56
rQ =—— 0X20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

Most significant

Least significant

Pre-index:
First, it stores rl in the
memory address of r0 + 4,
and ro remains unchanged.

ro

Homework 4 — Chapter 5 — Exercise 3

STR ri,

STR ri,

STR rl, [r@, 4]

[rO], #4
[rO, #4]!

>

Address Data
0x20000010
OX2000000F 12
OX2000000E 34
0x2000000D 56
0x2000000C 78
0x2000000B 12
OX2000000A 34
0x20000009 56

—) QX 20000008 78
0x20000007
0x20000006
0x20000005
0x20000004
0x20000003 12
0x20000002 34
0x20000001 56
0x20000000 78

ro remains
unchanged

-~ and equal to

0x20000008

Pre-index:
First, it stores rl in the
memory address of r0 + 4,
and ro remains unchanged.

Homework 4 — Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

MOV r2, #1
MOV r1, #1

loop CMP rl1, ro
BGT done
MUL r2, rl, r2
ADD rl, rl, #1
B loop

done MOV ro, r2

Homework 4 — Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

MOV r2, #1 ; r2 =1
MOV rl, #1 ; rl =1

loop CMP rl, r@ ; compare rl to r@. In this case, r@ is our input variable.
BGT done ; If rl is greater than re go to “done”
; If rl is less or equal to r@ the following lines will run.
MUL r2, rl, r2 ; r2 = r2*ril
ADD r1, rl, #1 ; rl =rl1 + 1
B loop ; g0 back to “loop”

done MOV ro, r2 ; When rl is greater than re, store the result r2 in ro

Homework 4 — Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

So, the easiest way to know what is this program computing is to plug in
some numbers. We know that r@ is the input and r2 is the output.

loop

done

MOV
MOV

CMP
BGT
MUL
ADD

MOV

r2, #1
rl, #1

ril, ro
done

r2, rl, r2
rl, rl, #1
loop

ro, r2

If ro =0 2
Ifro =1 -
If ro =2 >
If ro =3 >
If ro = 4 >

r2

r2

r2
r2

r2
r2
r2

r2
r2
r2
r2

1 > rl =1 (the loop will not run)

11 =1 > rl=1+1=2

1*1 =1 >rl=14+1=2
12 =2 >rl=2+1=3
1*1 =1 >rl=14+1=2
12 =2 >rl=2+1=3
3% 2 =6 > rl=3+1=4

1*1 =1 >rl=14+1=2
12 =2 >rl=2+1=3
3 2 =6 > rl=3+1=4

6%¥4 =24 2 rl =4 + 1

I
U1

Homework 4 — Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

MOV r2, #1
MOV rl, #1

loop CMP rl1, ro
BGT done
MUL r2, rl, r2
ADD ri1, ri, #1
B loop

done MOV ro, r2

So, the easiest way to know what is this program computing is to plug in
some numbers. We know that r@ is the input and r2 is the output.

Ifroe=0->r2=1 2> rl1l=1

Ifro=1>r2=1¥1 =1 2> rl=1+1-=2
Ifro=2->r2=1*1=1->r1=1+1=2

r2 =1¥2 =2 2> rl1 =2 +1 =3

The code 1s

Ifre=3>r2=1%=1>rl=1+1=2 computing

r2 =1*2 =2 > pr1 =2 +1 =3 the factorial

r2=3%¥2=6>rl=3+1=4 of re.
Ifroe=4->r2=1*1 =1 -2 rl1 = =

1
r2=1%¥2 =2 > rl = 2
r2 =3*2 =6 2 rl1 = 3
r2 =6 =24 2> rl =4 + 1

+ + +
e T
Il
P wWN

I
U1

Homework 4 — Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

_— T~

MOV r2, #1 ; r2 =1 Variables are initialized.
MOV rl, #1 ; rl =1

loop CMP rl, r@ ; compare rl to r@. In this case, r@ is our input variable.
BGT done ; If rl is greater than re go to “done”
; If rl is less or equal to r@ the following lines will run.
MUL r2, rl, r2 ; r2 = r2*ril
ADD r1, rl, #1 ; rl =rl1 + 1
B loop ; g0 back to “loop”

done MOV ro, r2 ; When rl is greater than re, store the result r2 in ro

Homework 4 —

Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

— T~

MOV r2, #1 ; r2 =1 Variables are initialized.
MOV rl, #1 ; rl =1

loop CMP rl1, roe ; cd

BGT done ; I

; If rl is less
MUL r2, rl, r2
ADD rl1, ri1, #1

mpare rl to r@. In this case, r@ is our input variable.
rl is greater than r@ go to “done”

or equal to r@ the following lines will run.

5 r2=—p2ir]

s rl=rl +1

This represents a for or a while loop:
“while rl is less or equal to ro” do r2

B loop

; g0 back to “loop”

done MOV ro, r2

; When rl is greater than r@, store the result r2 in re

r2*pl”

Homework 4 —

Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

—

—

MOV r2, #1 ; r2 =1 Variables are initialized.
MOV rl, #1 ; rl =1

loop CMP rl, r@ ; caompare rl to r@. In this case, r@ is our input variable.
BGT done ; It rl is greater than re go to “done”
; If rl is lesg or equal to r@ the following lines will run.
MUL r2, rl, rl2i; L] This represents a for or a while loop:
ADD rl, rl, #1|; rl =rl +1 “while rl is less or equal to ro” do r2
B loop ; g0 back to “loop”
done MOV ro, r2 ; When rl is greater than ro@, store the result r2 in ro

'
-

\ Return statement.

r2*pl”

Homework 4 — Chapter 6 — Exercise 1

» Translate the following code into a C program and explain what it does.

MOV r2, #1 int factorial(int ro){
MOV rl1, #1 int ri;

int r2 = 1;
loop CMP rl1, ro

BGT done J for(rl = 1; rl <= ro; rl++){
MUL r2, rl, r2 r2 = r2*ril;

ADD rl1, ri, #1 }

B loop

return r2;
done MOV ro, r2 }

Homework 4 — Chapter 6 — Exercise 4

AREA myData, DATA
array 0DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

Homework 4 — Chapter 6 — Exercise 4

> Your code should perform this operation!

AREA myData, DATA
The memory addresses _[ar‘r‘ay pcb(2, 4, 7, 3, 1, 2, 10, 11, 5, 13 » This is your a;’s.

of our array can be size DCD 10
accessed by using these
labels. So, we don’t
need to know the
exactly memory
location of the array
elements.

Homework 4 — Chapter 6 — Exercise 4

AREA myData, DATA
array DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

v
The summation indicates to us that we

are going to perform some kind of
loop.

Homework 4 — Chapter 6 — Exercise 4

Accessing an array in assembly can be found in the textbook section 5.4.4, page 105.
(1) Iterate an array by using pre-index

LDR r@, =array ; Using LDR pseudo instruction, r@ = array address
LDR r1, [r@] ; rl = array[®]. After Loading, r@ = array

LDR r2, [r@, #4] ., r2 = array[1]. After loading, r@ = array + 4
LDR r3, [r@, #8] ; r3 = array[2]. After loading, r@ = array + 8
LDR rd4, [r@, #12] ; r4 = array[3]. After loading, r@ = array + 12
LDR r5, [r@, #16] ; r5 = array[4]. After loading, r@ = array + 16

(2) Iterate an array by using post-index
LDR r@, =array ; Using LDR pseudo instruction, ré = array address
LDR rl1, [r@], #4 , r1 = array[@]. After loading, r@ = array + 4
LDR r2, [r@], #4- ; r2 = array[1]. After loading, r@ = array + 8
LDR r3, [r@], #4° ; r3 = array[2]. After lLoading, ré = array + 12
LDR r4, [r@], #4. ; r4 = array[3]. After loading, ré = array + 16
LDR r5, [r@], #4. ; r5 = array[4]. After loading, ré = array + 20
(3) Iterate an array by using pre-index with update

LDR rB, =array ; Using LDR pseudo instruction, r@ = array address
LDR r1, [re@] ; rl = array[@]. After loading, ré = array

LDR r2, [re, #4]! ; r2 = array[1]. After loading, ré = array + 4
LDR r3, [rO, #4]! ; r3 = array[2]. After loading, r@ = array + 8
LDR rd4, [r@, #4]! ; r4 = array[3]. After loading, r@ = array + 12
LDR r5, [r@, #4]! ; r5 = array[4]. After loading, r@ = array + 16

Homework 4 — Chapter 6 — Exercise 4

AREA myData, DATA, READWRITE

ALIGN
array DCD 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size DCD 10

AREA myCode, CODE, READONLY
EXPORT __main

ALIGN Solution using ARM
ENTRY
Assembly.
—main PROC . The one from the book.
LDR ro, =size
LDR r1, [ro] ;rl = 10
LDR ro, =array . .
LDR r2, [re], #4 5 r2 = a_1 --> get the first position of the array Only WOI‘kS Wlth the Kell A
MOV r3, #1 ; We are going to use r3 as our counter in the loop uVision [DE!
MOV r4, #0 ; The summation will be stored in r4
loop CMP r3, ri1 ; Loop while r3 is less than rl1 (10) o 1 !
BGT done 5 If r3 is greater than rl (10), we're done NOte' ThlS IDE 1s not
_ , being used in our labs!
MUL r5, r2, r2 5 p5 = a_i* a_i
MUL r5, r5, r2 ;5 Pr5=r5 *ai -->r5=a_i*a_i*a_ i
ADD r4, r5 ; Add the cube operation to the summation (r4)
LDR r2, [re], #4 ; get the next array element
ADD r3, #1 5 Increment r3 by 1
B loop
ENDP
done B done ; dead loop

END

Homework 4 — Chapter 6 — Exercise 4

.syntax unified
.Cpu cortex-m4
.fpu softvfp

.thumb
.section .data
array: .word 2, 4, 7, 3, 1, 2, 10, 11, 5, 13
size: .word 10
.section .text
.global main
main:
LDR ro, =size
LDR ri1, [re] // rl = 10
LDR ro, =array
LDR r2, [r@], #4 // r2 = a_1 --> get the first position of the array
MOV r3, #1 // We are going to use r3 as our counter in the loop
MOV r4, #0 // The summation will be stored in r4
loop:
CMP r3, ri1 // Loop while r3 is less than ri (10)
BGT done // If r3 is greater than ri1 (10), we are done
MUL r5, r2, r2 // r5 = ai * ai
MUL r5, r5, r2 // r5 =r5 * a i
ADD r4, r5 // Add the cube operation to the summation (r4)
LDR r2, [r@], #4 // get the next array element
ADD r3, #1 // Increment r3 by 1
B loop
done:

B done // dead loop

Solution using GNU
Assembly.

The only kind of
assembly that works with
the System Workbench
for STM32 used in our
labs!

Look the textbook
Appendix A to learn more
how to translate from one

to another.

Chapter 7

Chapter 7 — Exercise 1

» Write an assembly program that converts all characters of a string to upper

(:215;63’ AREA myData, DATA, READWRITE
ALIGN
array DCB "caPitalizeme",
AREA myCode, CODE, READONLY
EXPORT __main
ALIGN
ENTRY
__main PROC
LDR re, =array
LDRB r4, [ro] ; Load string into memory
Hint: loop
CMP r4, # ; Compare to see if we have a cap or a lower case
Use the ASCII BLT next
till)le SUBS r4, r4, # ; Subtract 32 if we have a lower case
STRB r4, [ro] ; Store that in the original string
next
ADD ro, ro, # ; Move to next byte
LDRB r4, [ro]
CMP r4, # ; Look for null terminator
BNE loop
done
B done
ENDP
__________________________ END T
p 68

Chapter 7 — Exercise 9

» Write an assembly program that checks whether an integer is a square of some integer. For example,

25 =52,

; Input Register:
; If square, then
5 If not, then R2
AREA prime, CODE,
EXPORT _ main
ALIGN

ENTRY

__main PROC
MOV R1, #25 ;
MOV R3, #1 ;

doOver
ADD R3, R3, #1
MUL R4, R3, R3
CMP R4, R1
BEQ isSquare
BGT itsNot
BLT doOver

Ve Ve Ve Ve Lo e

isSquare
MOV R2, R3 ;
B done ;

itsNot
MOV R2, #0 ;
SUB R2, R2, #1 ;
done B done H
ENDP
END

R1

R2 = sqrt(R1)
= -1;
READONLY

rl is our input
We will use r3 to perform the square operation

Increment r3

Perform r4 = r3*r3

Is r4 >= r1?

If r4 is equal to rl, than we found the square root of ri

If r4 is greater than rl1, than rl is not a square of an integer
If r4 is less than ri, increment r3 and try again

If R1 is a square of an integer, put the square root of rl into r2
Go to the dead loop

If R1 is NOT a square of an integer,
then make r2 equal to -1

Dead loop

Homework 5

Homework 5 - Chapter 7 — Exercise 5

» Write an assembly program that removes all vowel letters (a, €, 1, 0, u, A, E, I,
O, U) from a string.

.syntax
.Ccpu cor

unified
tex-md

.fpu softvfp

.thumb

.section
input_st

.data
r:

.ascii "The quick brown fox jumps over the lazy dog\e"

output_s
.asc

.section
.global

main:
LDR
LDRB

LDR
LDRB

checkIsL
CMP
BEQ

cMP
BLT

cMP
BLT

cMP
BLT

cMP
BLT
BGE

tr:
ii "\o"

.text
main

re, =input_str
rl, [ro]

r3, =output_str
r2, [r3]

etter:
rl, #0x00
almost_done

rl, #o0x41
nextChar_withCopy

rl, #0x5B
capLetter

rl, #0x61
nextChar_withCopy

rl, #0x7B
smalllLetter
nextChar_withCopy

// ril

// r2

// If

// If

// If

// If

is

is

rl

it

it

it

going to be our original string

going to be our destination string

is

is

is

is

equal to ox@0, this is the end of

less than ox41, the char is not a

greater than or equal to ©x41 AND

greater than or equal to ©x5B AND

// If it is greater than or equal to ©x61 AND
// If it is greater than or equal to ©x7B, the

the string

letter

less than ©x5B, the char is a capitalized letter

less than ox61, the char is not a letter

less than 0x7B, the char is a small letter
char is not a letter

nextChar_withCopy:

MOV r2, rl
STRB r2, [r3] // If it is not a vowel, just copy the char to our destination string.
ADD r3, r3, #1 // Update the memory address of out destination char.
nextChar: T e e e e e e e
ADD ro, ro, #1 // Move to the next char in the string

LDRB r1, [ro]
B checkIsLetter

capLetter:
ADD ri1, ril, #32 // If the char is a capitalized letter, convert to small letter by adding 32 (decimal)
B checkIsLetter

smalllLetter:

CMP r1, #0x61 // ril 'a'
BEQ isVowel

CMP rl1, #0x65 // ril 'e'
BEQ isVowel

CMP r1, #0x69 // rl it
BEQ isVowel

CMP r1, #Ox6F // rl o'
BEQ isVowel

CMP r1, #0x75 // rl "u'
BEQ isVowel

B notVowel

1}
o

1}
c

isVowel:
B nextChar

notVowel:
B nextChar_withCopy

almost_done:
ADD r3, r3, #1
MOV r2, #0x00
STRB r2, [r3]

done:
B done // dead loop T T T T T s s s s s s s e e

.end

Homework 5 - Chapter 7 — Exercise 7

» Write an assembly program that checks whether an unsigned number 1s a prime
number or not.

Homework 5 - Chapter 7 — Exercise 7

.syntax unified
.cpu cortex-m4
.fpu softvfp
.thumb

.section .text
.global main

main:
MOV rl1, #31 // rl will be used as our input
MOV r2, #1 // r2 will be our result.
// At the end of the program:
// If r2 = 1, then the number IS prime.
// If r2 = 0, then the number is NOT prime.
MOV r3, #2 // r3 will be used as a counter.
testPrime:
CMP r3, rl
BEQ done // If r3 = rl, we done with the program.
UDIV r4, rl, r3 // r4 = rl / r3 (only the integer part)
MUL r4, r3 // r4 = rd4*r3
CMP r4, rl1
BNE notPrimeYet
MOV r2, #0 // The division and multiplication gave us the original number.
B done // Therefore, the number is NOT prime and r2 will be 9,
// and we are done with the program.
notPrimeYet:
ADD r3, #1 // Test another integer to perform the division and multiplication.

B testPrime

done:
B done

.end

Homework 5 - Chapter 7 — Exercise 12

.syntax unified loop_variance:

.Cpu cortex-m4 LDR r4, [r3, r7, LSL #2] // r6 = array(i), where r7 =i
.fpu softvfp SUB r5, r4, ro // r5 = array(i) - mean
.thumb MLA r1, r5, r5, ril // rl = rl + (array(i) - mean)”2 --> Multiple and accumulate
ADD r7, r7, #1 // Update the loop index --> r7 =i + 1
.data
size: check_variance:
.word 10 CMP r7, r2 // While i <= array_size,
array: BLT loop_variance // keep adding (array(i) - mean)”2

.word 10,20,30,40,50,60,70,80,90,100
// If i > array_size, summation is done.

.text // Let's divide by the size of the array to obtain the variance.
.global main UDIV ro, rl, r2 // r@ --> Variance
main: stop:

LDR r2, =size B stop // Dead Loop

LDR r2, [r2] // r2 = size of the array

LDR r3, =array // r3 = memory address of the array .end

// 1st) Let's compute the mean

MOV r7, #0 // loop index

MOV ro, #0 // summation

B check_mean // Let's loop over the entire array

loop_mean:
LDR r4, [r3, r7, LSL #2] // r6 = array(i), where r7 = 1
ADD ro, re, r4 // r@ = re + array(i) --> Summation
ADD r7, r7, #1 // Update the loop index --> r7 =i + 1

check_mean:
CMP r7, r2 // While i <= array_size,
BLT loop_mean // keep summing the array elements

// If i > array_size, summation is done.
// Let's divide by the size of the array to obtain the mean.
UDIV ro, ro, r2 // re = (re / array_size) --> mean

// 2nd) Let's compute the variance

MOV r7, #0 // loop index
MOV rl1, #0 // sum of squares
B check_variance

Homework 6 (variations)

Homework 6 - Chapter 8 — Exercise 1

» “PUSH {r3}” 1s equivalent to what?
» Cortex-M processors uses full descending stack.

» It means, r3 will be pushed in the memory position indicated by the stack pointer, and
the stack pointer will be decreased by 4.

Homework 6 - Chapter 8 — Exercise 4

» How many byte does the stack need to pass the arguments when each of the
following function 1s called?
» int32 t funl(uint8 t a, uintl6 t b, uint8 t ¢, int32 t d)
» Hint: Page 169

» In this case, we don’t need to use the stack to pass the
arguments:

a -> roe
b -> rl
C ->r2
d -> r3

Homework 6 - Chapter 8 — Exercise 5

» Which register(s) holds the return value in the following functions?
» intl6_t funl()
» Hint: Page 169

» The return only needs 16 bits. So, we only need r@ to hold the
return argument.

» Note: some functions in this question return a pointer to a
memory address.

Homework 6 - Chapter 8 — Exercise 17-1sh

.syn
.cpu
.fpu
.thu

.dat
resu

cons

tax unified
cortex-md
softvfp

mb

a
1t:

.word ©
tants:
.word 2, 5

.text
.global main

.fun

main

c computeFunction

MOV ro, #2 // 1st argument --> x
MOV rl1, #3 // 2nd argument --> vy

BL computeFunction

GNU Assembly

// Let's put the result in the memory

LDR rl, =result
STR ro, [ri1]

stop:

B stop // Dead Loop

computeFunction:

.end
.end

LDR r2, =constants

LDR r3, [r2] // r3

/] £(x, y) = b*xX*y + ¢

MUL r5, ro, rl // r5 = x*y

MUL r5, r5, r3 // r5 = b*r5
ADD r5, r5, r4d // r4d =r5 + c
MOV r@, r5 // return value
BX LR

func

b -->b-=
LDR r4, [r2, #4] // rd =c -->c =

|
N

is stored in re

AREA myData, DATA, READWRITE
ALIGN

result DCD ©

constants DCD 2, 5

AREA myCode, CODE, READONLY
EXPORT __main
ALIGN

ENTRY

__main PROC

MOV ro, #2 ; 1st argument --> X
MOV rl, #3 ; 2nd argument --> vy

BL computeFunction

; Let's put the result in the memory

LDR rl, =result
STR ro, [ri1]

stop
B stop ; Dead Loop

ENDP

computeFunction PROC
LDR r2, =constants

LDR r3, [r2] ; Pr3=Db-->0D
LDR r4, [r2, #4] ; rd=c-->cC

3 F(x, y) = b*x*y + ¢

MUL r5, ro, rl ; r5 = x*y

MUL r5, r5, r3 ; r5 = b*r5

ADD r5, r5, r4 ; rd =r5+c

MOV r@, r5 ; return value is stored in reo
BX LR

ENDP

END

ARM Assembly

	1 - Professor: Dr. Yanmin Gong
TAs: Francisco Fernandes
Khuong Nguyen
	2 - Homework 3
	3 - Homework 3 – Question 1
	4 - Homework 3 – Question 2
	5 - Homework 3 – Question 3
	6 - Homework 3 – Question 3
	7 - Homework 3 – Question 3
	8 - Homework 3 – Question 3
	9 - Homework 3 – Question 3
	10 - Homework 3 – Question 3
	11 - Homework 3 – Question 3
	12 - Homework 3 – Question 3
	13 - Homework 3 – Question 3
	14 - Homework 3 – Question 3
	15 - Homework 3 – Question 4 – Item A
	16 - Homework 3 – Question 4 – Item A
	17 - Homework 3 – Question 4 – Item A
	18 - Homework 3 – Question 4 – Item A
	19 - Homework 3 – Question 4 – Item B
	20 - Homework 3 – Question 4 – Item B
	21 - Homework 3 – Question 4 – Item B
	22 - Homework 3 – Question 4 – Item B
	23 - Homework 3 – Question 4 – Item B
	24 - Homework 3 – Question 4 – Item B
	25 - Homework 3 – Question 4 – Item B
	26 - Homework 3 – Question 4 – Item B
	27 - Homework 3 – Question 4 – Item B
	28 - Homework 3 – Question 4 – Item B
	29 - Homework 3 – Question 4 – Item B
	30 - Homework 3 – Question 4 – Item B
	31 - Homework 3 – Question 4 – Item B
	32 - Homework 3 – Question 4 – Item B
	33 - Homework 3 – Question 4 – Item B
	34 - Homework 3 – Question 4 – Item B
	35 - Homework 3 – Question 4 – Item B
	36 - Homework 4
	37 - Homework 4 – Chapter 5 – Exercise 3
	38 - Homework 4 – Chapter 5 – Exercise 3
	39 - Homework 4 – Chapter 5 – Exercise 3
	40 - Homework 4 – Chapter 5 – Exercise 3
	41 - Homework 4 – Chapter 5 – Exercise 3
	42 - Homework 4 – Chapter 5 – Exercise 3
	43 - Homework 4 – Chapter 5 – Exercise 3
	44 - Homework 4 – Chapter 5 – Exercise 3
	45 - Homework 4 – Chapter 5 – Exercise 3
	46 - Homework 4 – Chapter 5 – Exercise 3
	47 - Homework 4 – Chapter 5 – Exercise 3
	48 - Homework 4 – Chapter 5 – Exercise 3
	49 - Homework 4 – Chapter 5 – Exercise 3
	50 - Homework 4 – Chapter 5 – Exercise 3
	51 - Homework 4 – Chapter 5 – Exercise 3
	52 - Homework 4 – Chapter 5 – Exercise 3
	53 - Homework 4 – Chapter 6 – Exercise 1
	54 - Homework 4 – Chapter 6 – Exercise 1
	55 - Homework 4 – Chapter 6 – Exercise 1
	56 - Homework 4 – Chapter 6 – Exercise 1
	57 - Homework 4 – Chapter 6 – Exercise 1
	58 - Homework 4 – Chapter 6 – Exercise 1
	59 - Homework 4 – Chapter 6 – Exercise 1
	60 - Homework 4 – Chapter 6 – Exercise 1
	61 - Homework 4 – Chapter 6 – Exercise 4
	62 - Homework 4 – Chapter 6 – Exercise 4
	63 - Homework 4 – Chapter 6 – Exercise 4
	64 - Homework 4 – Chapter 6 – Exercise 4
	65 - Homework 4 – Chapter 6 – Exercise 4
	66 - Homework 4 – Chapter 6 – Exercise 4
	67 - Chapter 7
	68 - Chapter 7 – Exercise 1
	69 - Chapter 7 – Exercise 9
	70 - Homework 5
	71 - Homework 5 - Chapter 7 – Exercise 5
	72 - Slide72
	73 - Slide73
	74 - Homework 5 - Chapter 7 – Exercise 7
	75 - Homework 5 - Chapter 7 – Exercise 7
	76 - Homework 5 - Chapter 7 – Exercise 12
	77 - Homework 5 - Chapter 7 – Exercise 12
	78 - Homework 6 (variations)
	79 - Homework 6 - Chapter 8 – Exercise 1
	80 - Homework 6 - Chapter 8 – Exercise 4
	81 - Homework 6 - Chapter 8 – Exercise 5
	82 - Homework 6 - Chapter 8 – Exercise 17-ish
	83 - Slide83

