
Lab 4: Pulse-width Modulation 1/9

Lab 4: Pulse-width Modulation

Instructor:
Dr. Carl Latino

carl.latino@okstate.edu

Graduate Teaching Assistant:
Francisco E. Fernandes Jr.

feferna@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University

Fall 2019

ENSC 3213: Computer-based Systems

mailto:carl.latino@okstate.edu
mailto:feferna@okstate.edu

Lab 4: Pulse-width Modulation 2/9ENSC 3213: Computer-based Systems

Lab Assignment
● Write an Assembly program that uses the System Timer Interrupts and

Pulse-Width Modulation (PWM) to change the brightness of the red LED
using the joystick as follow:
– If the MIDDLE button is pressed, the Duty Cycle should be equal to 0% (the red LED will be

OFF).

– If the LEFT button is pressed, the Duty Cycle should be equal to 15%.

– If the RIGHT button is pressed, the Duty Cycle should be equal to 40%.

– If the UP button is pressed, the Duty Cycle should be equal to 65%.

– If the DOWN button is pressed, the Duty Cycle should be equal to 100% (the red LED will ON
with full brightness).

● The AHB clock (external clock) is set to 8 MHz, and a single PWM cycle
must be set to exactly 0.02 seconds! It means that every second will
contain 50 PWM cycles.

● Each PWM cycle should be further divided in 100 equal “chunks” of time.
Thus, each chunk of time of a single PWM cycle will take 0.0002 seconds.

Lab 4: Pulse-width Modulation 3/9ENSC 3213: Computer-based Systems

Schedule and Grading

● You MUST demo a working LAB 4 on October 07, 2019 as follows:
– Show the five different brightness of the red LED using the SMT32L4 Discovery board.

– Show the five different duty cycles used in this lab with the help of the oscilloscope.

– Show your code.

● Grading for LAB 4:
– No pre-lab quiz! Read Chapter 15.3 to have a better understanding of PWMs.

– Functionality and Correctness: 10 points.

● All five brightness settings (0%, 15%, 40%, 65%, 100%) working: 10 points.

● Between two and four brightness settings working: 4 points.

● No PWM implementation: 0 points.

● Grading penalization:
– Students who disrupt the lecture by talking and not paying attention will lose 2 points in their lab 3’s grade!

– Students who do not follow the lab safety procedures (e.g. coming to lab with shorts and flip flops) will lose
1 points in their lab 3’s grade!

BY THE
END OF
YOUR
LAB

SECTION

Lab 4: Pulse-width Modulation 4/9ENSC 3213: Computer-based Systems

Pulse-Width Modulation (PWM)
● PWM can be used to simulate analog signals with only square waves.
● The STM32L4 Discovery Kit contains hardware to generate PWMs automatically.
● However, in this lab, we will manually generate a PWM to control the brightness of an LED.

Lab 4: Pulse-width Modulation 5/9ENSC 3213: Computer-based Systems

PWM for Lab 4

...

50 cycles

3.3V

0V

Voltage

Time1s
0s

Single cycles

Time of a
single cycle:

0.02s

Lab 4: Pulse-width Modulation 6/9ENSC 3213: Computer-based Systems

Duty Cycle for Lab 4

Voltage

Time

0s

Single cycle

100% duty cycle (always on)

Time

0.02s

75% duty cycle

0.015s

Time
50% duty cycle

0.02s

Time
25% duty cycle

0.005s

0.01s

Time
0% duty cycle (always off)

Lab 4: Pulse-width Modulation 7/9ENSC 3213: Computer-based Systems

How Frequent Should the Interrupts Be?
● AHB Clock = 8MHz

– Clock used by the SysTick = 8 MHz/8 = 1 MHz

● Each PWM cycle is equal to 0.02 seconds (50Hz).
● If we want to be able to generate any duty cycle between 0% and 100%

with increments of 1%, we need interrupts at every:
– 0.02/100 = 0.0002 seconds

● What should be the value of the SysTick_LOAD register (RELOAD value)?
– SysTick_LOAD = (0.0002 x 1 x 106) – 1

– SysTick_LOAD = 199

Lab 4: Pulse-width Modulation 8/9ENSC 3213: Computer-based Systems

Lab 4: Flowchart

Start

Clock Initialization
(External Clock = 8 MHz)

GPIO Initialization

SysTick Initialization

DUTY_CYCLE = 100
(r10 = DUTY_CYCLE)

RED LED = ON

Clock_Init.s

GPIO_Init.s

SysTick.s

main.s

You don´t need to write
any code for this!

You don´t need to write
any code for this!

Start Timer
Interrupt Subroutine

COUNTER = COUNTER - 1

End of the Subroutine

SysTick.s

SysTick_Handler

Start
SysTick_Initialization

Disable SysTick Counter

Disable SysTick Interrupt

Select External Clock

Configure number of TICKs
to generate interrutps every 0.0002s

Configure interupt priority

Enable SysTick Interrupt

Enable SysTick Counter

End
SysTick_Initialization

COUNTER = 100
(r11 = COUNTER)

Read Joystick and
Change Duty Cycle

Is
COUNTER

greater than
DUTY_CYCLE

?

Is
COUNTER

equal to
ZERO

?

No

RED LED = OFF

No

Yes

Start
change_duty_cycle

Subroutine

Read GPIOA_IDR
register

Is
MIDDLE

PRESSED
?

Is
DOWN

PRESSED
?

Is
RIGHT

PRESSED
?

Is
LEFT

PRESSED
?

Is
UP

PRESSED
?

DUTY_CYCLE = 0

DUTY_CYCLE = 15

END
(BX LR)

END
(BX LR)

END
(BX LR)

DUTY_CYCLE = 40

DUTY_CYCLE = 65

DUTY_CYCLE = 100

END
(BX LR)

END
(BX LR)

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Subroutine to read
the Joystick and

change Duty Cycle

This subroutine
should be in
your main.s

Yes

Lab 4: Pulse-width Modulation 9/9ENSC 3213: Computer-based Systems

Lab 4: Startup Code
● A startup code in a zip-file (filename: Lab 4 – Startup Code.zip) is available on

Canvas. It contains the following files:
– main.s →You have to write all missing code!

– Clock_Init.s →You don’t need to change anything in this file!

– GPIO_Init.s →You don’t need to change anything in this file!

– SysTick.s →You have to write all missing code!

– stm32l476xx_constants.s →You don’t need to change anything in this file!

● Download and EXTRACT the startup code.
● Create a new project from scratch using the STM32CubeIDE.
● Move ALL files to you project’s src folder, and follow the standard steps when

we create new projects.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

