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Lab Assignment
● Write an Assembly program that uses the System Timer Interrupts and 

Pulse-Width Modulation (PWM) to change the brightness of the red LED 
using the joystick as follow:
– If the MIDDLE button is pressed, the Duty Cycle should be equal to 0% (the red LED will be 

OFF).

– If the LEFT button is pressed, the Duty Cycle should be equal to 15%.

– If the RIGHT button is pressed, the Duty Cycle should be equal to 40%.

– If the UP button is pressed, the Duty Cycle should be equal to 65%.

– If the DOWN button is pressed, the Duty Cycle should be equal to 100% (the red LED will ON 
with full brightness).

● The AHB clock (external clock) is set to 8 MHz, and a single PWM cycle 
must be set to exactly 0.02 seconds! It means that every second will 
contain 50 PWM cycles.

● Each PWM cycle should be further divided in 100 equal “chunks” of time. 
Thus, each chunk of time of a single PWM cycle will take 0.0002 seconds.
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Schedule and Grading

● You MUST demo a working LAB 4 on October 07, 2019 as follows:
– Show the five different brightness of the red LED using the SMT32L4 Discovery board.

– Show the five different duty cycles used in this lab with the help of the oscilloscope.

– Show your code.

● Grading for LAB 4:
– No pre-lab quiz! Read Chapter 15.3 to have a better understanding of PWMs.

– Functionality and Correctness: 10 points.

● All five brightness settings (0%, 15%, 40%,  65%, 100%) working: 10 points.

● Between two and four brightness settings working: 4 points.

● No PWM implementation: 0 points.

● Grading penalization:
– Students who disrupt the lecture by talking and not paying attention will lose 2 points in their lab 3’s grade!

– Students who do not follow the lab safety procedures (e.g. coming to lab with shorts and flip flops) will lose 
1 points in their lab 3’s grade!

BY THE 
END OF 
YOUR 
LAB 

SECTION
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Pulse-Width Modulation (PWM)
● PWM can be used to simulate analog signals with only square waves.
● The STM32L4 Discovery Kit contains hardware to generate PWMs automatically.
● However, in this lab, we will manually generate a PWM to control the brightness of an LED.
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PWM for Lab 4
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Duty Cycle for Lab 4
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How Frequent Should the Interrupts Be?
● AHB Clock = 8MHz

– Clock used by the SysTick = 8 MHz/8 = 1 MHz

● Each PWM cycle is equal to 0.02 seconds (50Hz). 
● If we want to be able to generate any duty cycle between 0% and 100% 

with increments of 1%, we need interrupts at every:
– 0.02/100 = 0.0002 seconds

● What should be the value of the SysTick_LOAD register (RELOAD value)?
– SysTick_LOAD = (0.0002 x 1 x 106) – 1

– SysTick_LOAD = 199
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Lab 4: Flowchart
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Lab 4: Startup Code
● A startup code in a zip-file (filename: Lab 4 – Startup Code.zip) is available on 

Canvas. It contains the following files: 
– main.s  →You have to write all missing code!

– Clock_Init.s  →You don’t need to change anything in this file!

– GPIO_Init.s  →You don’t need to change anything in this file!

– SysTick.s  →You have to write all missing code!

– stm32l476xx_constants.s   →You don’t need to change anything in this file!

● Download and EXTRACT the startup code.
● Create a new project from scratch using the STM32CubeIDE.
● Move ALL files to you project’s src folder, and follow the standard steps when 

we create new projects.
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