
Lab 2: Interfacing Joystick and LEDs 1/25

Lab 2: Interfacing Joystick and LEDs

Instructor:
Dr. Carl Latino

carl.latino@okstate.edu

Graduate Teaching Assistant:
Francisco E. Fernandes Jr.

feferna@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University

Fall 2019

ENSC 3213: Computer-based Systems

mailto:carl.latino@okstate.edu
mailto:feferna@okstate.edu

Lab 2: Interfacing Joystick and LEDs 2/25ENSC 3213: Computer-based Systems

Overview

● Introduction to General Purpose Input and Output (GPIO):
– GPIO operation modes.

– GPIO registers.

● Lab Assignment:
– Write an Assembly program that uses the onboard joystick to control both the red and green

LEDs as follows:

● If the UP button is pushed, TURN ON both LEDs.

● If the DOWN button is pushed, TURN OFF both LEDs.

Lab 2: Interfacing Joystick and LEDs 3/25ENSC 3213: Computer-based Systems

Schedule and Grading

● Lab 2 will take a total of two weeks:
– September 16, 2019:

● Complete and show to the T.A. the code to initialize the GPIOs clocks and pins.

● Use your pre-lab quiz to help you with the code!

– September 23, 2019:

● Complete and demo to the T.A. your final WORKING lab.

● Grading for this lab:
– Pre-lab quiz: 2 points.

– Assembly code: 8 points.

● GPIOs initialization: 3 points.

● Working lab in the final week: 5 points.

– Total: 10 points.

● Grading penalization:
– Students who disrupt the lecture by talking and not paying attention will loss 2 points in their lab 2’s grade!

– Students who do not follow the lab safety procedures (e.g. coming to lab with shorts and flip flops) will loss 1 points in
their lab 2’s grade!

Lab 2: Interfacing Joystick and LEDs 4/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – Memory Map of Cortex M4

Code

SRAM

Peripheral

External Device

External RAM

System

0x00000000

0x20000000

0.5 GB

0x40000000

0.5 GB

0x60000000
0.5 GB

0xA0000000

1 GB

0xFFFFFFFF

0.5 GB

0xE0000000

1 GB

One Byte (8 bits)

4 GB

On-chip Flash, for code & data

On-chip RAM, for heap, stack, & code

AHB & APB, such as timers, GPIO

Off-chip memory for data

Such as SD card

NVIC, System Timer, SCB,
vendor-specific memory

Lab 2: Interfacing Joystick and LEDs 5/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – Memory Map of STM32L4

Code

SRAM

Peripheral

External Device

External RAM

System

0x00000000

GPIO A (1 KB)

GPIO B (1 KB)

0x48000000

0x48000400

0x48000800

0x48000C00
GPIO C (1 KB)

GPIO D (1 KB)
0x48001000

0x40000000

0x60000000

…

…

0x20000000

0.5 GB

0x40000000

0.5 GB

0x60000000
0.5 GB

0xA0000000

1 GB

0xFFFFFFFF

0.5 GB

0xE0000000

1 GB

One Byte (8 bits)

Lab 2: Interfacing Joystick and LEDs 6/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – GPIO Memory Map

GPIO A (1 KB)
0x48000000

0x48000400

IDR
ODR
BSRR
LCKR

MODER
OTYPER
OSPEEDR

PUPDR

AFR[0]
AFR[1]

BRR
ASCR

0x48000000

0x48000004

0x48000008

0x4800000C

0x48000010

0x48000014

0x48000018

0x4800001C

0x48000020

0x48000024

0x48000028

0x4800002C

48 bytes

0x48000400

Each register has 4 bytes

Lab 2: Interfacing Joystick and LEDs 7/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – GPIO Memory Map

GPIO A (1 KB)
0x48000000

0x48000400

IDR
ODR
BSRR
LCKR

MODER
OTYPER
OSPEEDR

PUPDR

AFR[0]
AFR[1]

BRR
ASCR

0x48000000

0x48000004

0x48000008

0x4800000C

0x48000010

0x48000014

0x48000018

0x4800001C

0x48000020

0x48000024

0x48000028

0x4800002C

48 bytes

0x48000400

Set pin A.14 to high

Set bit 14
of ODR
to high

Lab 2: Interfacing Joystick and LEDs 8/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – Output Data Register

Lab 2: Interfacing Joystick and LEDs 9/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – Output Data Register

LDR r0, =0x48000014 // r0 = 0x48000014
LDR r1, [r0] // r1 = the memory contents located at 0x48000014
LDR r2, =0x4000 // r2 = 0x4000 --> r2 will be used as a mask to set bit 14
ORR r1, r1, r2 // r1 --> bitwise SET between r1 and r2

// r1 = 0x4000
STR r1, [r0] // Store the value of r1 back into memory address 0x48000014

Lab 2: Interfacing Joystick and LEDs 10/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – Output Data Register

● 8 GPIO Ports:
A, B, C, D, E, F, G, H

● Up to 16 pins in each port

Lab 2: Interfacing Joystick and LEDs 11/25ENSC 3213: Computer-based Systems

Basic Structure of an I/O Port Bit
● Input and Output:

Lab 2: Interfacing Joystick and LEDs 12/25ENSC 3213: Computer-based Systems

Basic Structure of an I/O Port Bit
● Only Output:

STM32L4

Schmitt
trigger

Output
Data
Register

GPIO MODE Register:

GPIO Output Type Register (OTYPER)
 0 = Output push-pull (default)
 1 = Output open-drain

GPIO Pull-up/Pull-down Register (PUPDR)
 00 = No pull-up, pull-down 01 = Pull-up
 10 = Pull-down 11 = Reserved

00 = Input, 01 = Output,
10 = AF, 11 = Analog (default)

Lab 2: Interfacing Joystick and LEDs 13/25ENSC 3213: Computer-based Systems

Enabling GPIOs clocks
● AHB2 peripheral clock enable register (RCC_AHB2ENR)

STM32L4

Lab 2: Interfacing Joystick and LEDs 14/25ENSC 3213: Computer-based Systems

GPIO Mode Register (MODER)
• 32 bits (16 pins, 2 bits per pin):

Lab 2: Interfacing Joystick and LEDs 15/25ENSC 3213: Computer-based Systems

GPIO Output Type Register (OTYPER)
● 16 bits reserved, 16 data bits, 1 bit for each pin:

+ Vcc

PMOS

NMOS

GPIO
Output Pin

0/1

GPIO
Output Bit

Controller

D

S

G

D

S

G

Lab 2: Interfacing Joystick and LEDs 16/25ENSC 3213: Computer-based Systems

GPIO Output Data Register (ODR)
● 16 bits reserved, 16 data bits, 1 bit for each pin:

Pin 2

Lab 2: Interfacing Joystick and LEDs 17/25ENSC 3213: Computer-based Systems

Modifying Special Purpose Registers

LDR r0, =#RCC_BASE
LDR r1, [r0, #RCC_AHB2ENR]

ORR r1, r1, #0x13

STR r1, [r0, #RCC_AHB2ENR]

1st) Load the contents of the register
by accessing its memory location.

2nd) Modify the register’s contents.

3rd) Store the modified content back
to the register’s memory location.

Lab 2: Interfacing Joystick and LEDs 18/25ENSC 3213: Computer-based Systems

Modifying Special Purpose Registers

LDR r0, =#RCC_BASE
LDR r1, [r0, #RCC_AHB2ENR]

ORR r1, r1, #0x13

STR r1, [r0, #RCC_AHB2ENR]

RCC_BASE is the base address of the
RCC register that controls the
hardware’s clock.

RCC_AHB2ENR is one of the RCC
registers, and it controls which GPIO
ports are enabled or disabled. In
this code, RCC_AHB2ENR is an offset.

Thus, r1 will have the contents of
the memory address RCC_BASE +
RCC_AHB2ENR.

0x13 is 32bit binary MASK:
0b00000000000000000000000000010011

In this case, we want to modify bits
0, 1, and 4.

The ORR instruction will perform a
bitwise OR, which will SET bits 0, 1,
and 4!

Stores the content of r1 into the memory
address RCC_BASE + RCC_AHB2ENR!

Lab 2: Interfacing Joystick and LEDs 19/25ENSC 3213: Computer-based Systems

How to Read an Input - 1/2

● Suppose we have a button connected to GPIO Port C, Pin 7, and we want
to know if that button was pressed:
– First, you have to enable GPIO Port C:

● LDR r0, =#RCC_BASE

● LDR r1, [r0, #RCC_AHB2ENR]

● ORR r1, r1, #0x04 // 0x04 is a MASK indicating that we want to modify BIT 2. This bit enables or
 // disables GPIO port C!

● STR r1, [r0, #RCC_AHB2ENR]

– Second, you have to read the contents of the register GPIOC_IDR:

● LDR r0, =#GPIOC_BASE

● LDR r1, [r0, #GPIO_IDR]

Lab 2: Interfacing Joystick and LEDs 20/25ENSC 3213: Computer-based Systems

How to Read an Input - 2/2

– Third, you have to verify if pin 7 is equal to 1 by comparing r1 with a mask:

● AND r2, r1, #0x80 // 0x80 is equal to 0b0000000010000000 (binary)

● If the button is NOT pressed, r2 will be equal to 0x00 (zero).

● If the button IS pressed, r2 will be equal to 0x80 (not equal to zero).

– Fourth, you can compare r2 to zero and branch if r2 is not equal to zero:

● CMP r2, #0

● BNE some_label // BNE → Branch if R2 is Not Equal to ZERO to the location of “some_label”

Lab 2: Interfacing Joystick and LEDs 21/25ENSC 3213: Computer-based Systems

Sample code to light up the RED LED (PB2)
.syntax unified

.global main

.include "stm32l476xx_constants.s"

main:
// Enable GPIO Port B
LDR r0, =RCC_BASE
LDR r1, [r0, #RCC_AHB2ENR]
ORR r1, r1, #0x02
STR r1, [r0, #RCC_AHB2ENR]

// Turn ON RED LED
LDR r0, =GPIOB_BASE
LDR r1, [r0, #GPIO_ODR]
ORR r1, r1, #0x04
STR r1, [r0, #GPIO_ODR]

stop: B stop

These keywords are defined in the file
stm32l476xx_constants.s! Use this file to

help your while programming!

RCC_BASE = 0x40021000
RCC_AHB2ENR = Offset of 0x4C
GPIOB_BASE = 0x48000400
GPIO_ODR = Offset of 0x14

Lab 2: Interfacing Joystick and LEDs 22/25ENSC 3213: Computer-based Systems

Joystick Pins

Lab 2: Interfacing Joystick and LEDs 23/25ENSC 3213: Computer-based Systems

How to Create a Loop in Assembly

Loop:

// DO SOME STUFF

// DO OTHER STUFF

B Loop // B → Unconditional branch, jump to Loop.

Lab 2: Interfacing Joystick and LEDs 24/25ENSC 3213: Computer-based Systems

Lab 2: step-by-step

1) Enable the GPIOs ports A, B and E.

2) Configure PB2 (blue LED) and PE8 (green LED) as output.

3) Configure PB2 and PE8 as push-pull mode.

4) Configure PB2 and PE8 output type as No Pull-up No Pull-down.

5) Configure PA0, PA1, PA2, PA3 and PA5 as input.

6) Configure PA0, PA1, PA2, PA3 and PA5 as Pull-down.

7) Wait and verify if any joystick position is pressed.

Lab 2: Interfacing Joystick and LEDs 25/25ENSC 3213: Computer-based Systems

Lab 2: Start-up Code

● To help you, a start-up code is available on Canvas. Use it to create your
project from scratch.
– You will need the main.s and stm32l476xx_constants.s files in yours Src folder!

● The start-up code contains some helpful comments. Read them!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

