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Overview

● Introduction to General Purpose Input and Output (GPIO):
– GPIO operation modes.

– GPIO registers.

● Lab Assignment:
– Write an Assembly program that uses the onboard joystick to control both the red and green 

LEDs as follows:

● If the UP button is pushed, TURN ON both LEDs.

● If the DOWN button is pushed, TURN OFF both LEDs.
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Schedule and Grading

● Lab 2 will take a total of two weeks:
– September 16, 2019:

● Complete and show to the T.A. the code to initialize the GPIOs clocks and pins.

● Use your pre-lab quiz to help you with the code!

– September 23, 2019:

● Complete and demo to the T.A. your final WORKING lab.

● Grading for this lab:
– Pre-lab quiz: 2 points.

– Assembly code: 8 points.

● GPIOs initialization: 3 points.

● Working lab in the final week: 5 points.

– Total: 10 points.

● Grading penalization:
– Students who disrupt the lecture by talking and not paying attention will loss 2 points in their lab 2’s grade!

– Students who do not follow the lab safety procedures (e.g. coming to lab with shorts and flip flops) will loss 1 points in 
their lab 2’s grade!
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Introduction to GPIOs – Memory Map of Cortex M4

Code

SRAM

Peripheral

External Device

External RAM

System

0x00000000

0x20000000

0.5 GB

0x40000000

0.5 GB

0x60000000
0.5 GB

0xA0000000

1 GB

0xFFFFFFFF

0.5 GB

0xE0000000

1 GB

One Byte (8 bits)

4 GB

On-chip Flash, for code & data

On-chip RAM, for heap, stack, & code

AHB & APB, such as timers, GPIO

Off-chip memory for data

Such as SD card

NVIC, System Timer, SCB, 
vendor-specific memory
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Introduction to GPIOs – Memory Map of STM32L4

Code

SRAM

Peripheral

External Device

External RAM

System

0x00000000

GPIO A (1 KB)

GPIO B (1 KB)

0x48000000

0x48000400

0x48000800

0x48000C00
GPIO C (1 KB)

GPIO D (1 KB)
0x48001000

0x40000000

0x60000000

…

…

0x20000000

0.5 GB

0x40000000

0.5 GB

0x60000000
0.5 GB

0xA0000000

1 GB

0xFFFFFFFF

0.5 GB

0xE0000000

1 GB

One Byte (8 bits)
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Introduction to GPIOs – GPIO Memory Map

GPIO A (1 KB)
0x48000000

0x48000400

IDR
ODR
BSRR
LCKR

MODER
OTYPER
OSPEEDR

PUPDR

AFR[0]
AFR[1]

BRR
ASCR

0x48000000

0x48000004

0x48000008

0x4800000C

0x48000010

0x48000014

0x48000018

0x4800001C

0x48000020

0x48000024

0x48000028

0x4800002C

48 bytes

0x48000400

Each register has 4 bytes



Lab 2: Interfacing Joystick and LEDs 7/25ENSC 3213: Computer-based Systems

Introduction to GPIOs – GPIO Memory Map

GPIO A (1 KB)
0x48000000

0x48000400

IDR
ODR
BSRR
LCKR

MODER
OTYPER
OSPEEDR

PUPDR

AFR[0]
AFR[1]

BRR
ASCR

0x48000000

0x48000004

0x48000008

0x4800000C

0x48000010

0x48000014

0x48000018

0x4800001C

0x48000020

0x48000024

0x48000028

0x4800002C

48 bytes

0x48000400

Set pin A.14 to high

Set bit 14 
of ODR 
to high
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Introduction to GPIOs – Output Data Register
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Introduction to GPIOs – Output Data Register

LDR r0, =0x48000014 // r0 = 0x48000014 
LDR r1, [r0] // r1 = the memory contents located at 0x48000014 
LDR r2, =0x4000 // r2 = 0x4000 --> r2 will be used as a mask to set bit 14
ORR r1, r1, r2 // r1 --> bitwise SET between r1 and r2

// r1 = 0x4000
STR r1, [r0] // Store the value of r1 back into memory address 0x48000014
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Introduction to GPIOs – Output Data Register

● 8 GPIO Ports: 
A, B, C, D, E, F, G, H

● Up to 16 pins in each port
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Basic Structure of an I/O Port Bit
● Input and Output:
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Basic Structure of an I/O Port Bit
● Only Output:

STM32L4

Schmitt 
trigger

Output 
Data 
Register

GPIO MODE Register:

GPIO Output Type Register (OTYPER)
 0 = Output push-pull (default) 
 1 = Output open-drain

GPIO Pull-up/Pull-down Register (PUPDR)
 00 = No pull-up, pull-down   01 = Pull-up 
 10 = Pull-down                    11 = Reserved

00 = Input,   01 = Output, 
10 = AF,       11 = Analog (default)
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Enabling GPIOs clocks
● AHB2 peripheral clock enable register (RCC_AHB2ENR)

STM32L4
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GPIO Mode Register (MODER)
• 32 bits (16 pins, 2 bits per pin):
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GPIO Output Type Register (OTYPER)
● 16 bits reserved, 16 data bits, 1 bit for each pin:

+ Vcc

PMOS

NMOS

GPIO 
Output Pin

0/1

GPIO 
Output Bit

Controller

D

S

G

D

S

G
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GPIO Output Data Register (ODR)
● 16 bits reserved, 16 data bits, 1 bit for each pin:

Pin 2
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Modifying Special Purpose Registers

LDR r0, =#RCC_BASE
LDR r1, [r0, #RCC_AHB2ENR]

ORR r1, r1, #0x13

STR r1, [r0, #RCC_AHB2ENR]

1st) Load the contents of the register 
by accessing its memory location.

2nd) Modify the register’s contents.

3rd) Store the modified content back 
to the register’s memory location.
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Modifying Special Purpose Registers

LDR r0, =#RCC_BASE
LDR r1, [r0, #RCC_AHB2ENR]

ORR r1, r1, #0x13

STR r1, [r0, #RCC_AHB2ENR]

RCC_BASE is the base address of the 
RCC register that controls the 
hardware’s clock.

RCC_AHB2ENR is one of the RCC 
registers, and it controls which GPIO 
ports are enabled or disabled. In 
this code, RCC_AHB2ENR is an offset. 

Thus, r1 will have the contents of 
the memory address RCC_BASE + 
RCC_AHB2ENR.

0x13 is 32bit binary MASK:
0b00000000000000000000000000010011

In this case, we want to modify bits 
0, 1, and 4.

The ORR instruction will perform a 
bitwise OR, which will SET bits 0, 1, 
and 4!

Stores the content of r1 into the memory 
address RCC_BASE + RCC_AHB2ENR!
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How to Read an Input - 1/2

● Suppose we have a button connected to GPIO Port C, Pin 7, and we want 
to know if that button was pressed:
– First, you have to enable GPIO Port C:

● LDR r0, =#RCC_BASE

● LDR r1, [r0, #RCC_AHB2ENR]

● ORR r1, r1, #0x04  // 0x04 is a MASK indicating that we want to modify BIT 2. This bit enables or       
                   // disables GPIO port C!

● STR r1, [r0, #RCC_AHB2ENR]

– Second, you have to read the contents of the register GPIOC_IDR:

● LDR r0, =#GPIOC_BASE

● LDR r1, [r0, #GPIO_IDR]
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How to Read an Input - 2/2

– Third, you have to verify if pin 7 is equal to 1 by comparing r1 with a mask:

● AND r2, r1, #0x80 // 0x80 is equal to 0b0000000010000000 (binary)

● If the button is NOT pressed, r2 will be equal to 0x00 (zero).

● If the button IS pressed, r2 will be equal to 0x80 (not equal to zero).

– Fourth, you can compare r2 to zero and branch if r2 is not equal to zero:

● CMP r2, #0

● BNE some_label // BNE → Branch if R2 is Not Equal to ZERO to the location of “some_label”
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Sample code to light up the RED LED (PB2)
.syntax unified

.global main

.include "stm32l476xx_constants.s"

main:
// Enable GPIO Port B
LDR r0, =RCC_BASE
LDR r1, [r0, #RCC_AHB2ENR]
ORR r1, r1, #0x02
STR r1, [r0, #RCC_AHB2ENR]

// Turn ON RED LED
LDR r0, =GPIOB_BASE
LDR r1, [r0, #GPIO_ODR]
ORR r1, r1, #0x04
STR r1, [r0, #GPIO_ODR]

stop: B stop

These keywords are defined in the file 
stm32l476xx_constants.s! Use this file to 

help your while programming!

RCC_BASE = 0x40021000
RCC_AHB2ENR = Offset of 0x4C
GPIOB_BASE = 0x48000400
GPIO_ODR = Offset of 0x14
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Joystick Pins
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How to Create a Loop in Assembly

Loop:

// DO SOME STUFF

// DO OTHER STUFF

B Loop // B → Unconditional branch, jump to Loop.



Lab 2: Interfacing Joystick and LEDs 24/25ENSC 3213: Computer-based Systems

Lab 2: step-by-step

1) Enable the GPIOs ports A, B and E.

2) Configure PB2 (blue LED) and PE8 (green LED) as output.

3) Configure PB2 and PE8 as push-pull mode.

4) Configure PB2 and PE8 output type as No Pull-up No Pull-down.

5) Configure PA0, PA1, PA2, PA3 and PA5 as input.

6) Configure PA0, PA1, PA2, PA3 and PA5 as Pull-down.

7) Wait and verify if any joystick position is pressed.
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Lab 2: Start-up Code

● To help you, a start-up code is available on Canvas. Use it to create your 
project from scratch.
– You will need the main.s and stm32l476xx_constants.s files in yours Src folder!

● The start-up code contains some helpful comments. Read them!
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