
Lab 1 - Part 2 1/15

Lab 1 – Part 2: Debugging and Basic Assembly

Instructor:
Dr. Carl Latino

carl.latino@okstate.edu

Graduate Teaching Assistant:
Francisco E. Fernandes Jr.

feferna@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University

Fall 2019

ENSC 3213: Computer-based Systems

mailto:carl.latino@okstate.edu
mailto:feferna@okstate.edu

Lab 1 - Part 2 2/15ENSC 3213: Computer-based Systems

Today’s Goals

● Addition using Assembly programming.

● Bitwise Operations and Masking.

● Learn how to debug your program.

● Write a small assembly program.

Lab 1 - Part 2 3/15ENSC 3213: Computer-based Systems

Basic Assembly program – main.s

.syntax unified

.global main

.include "stm32l476xx_constants.s"

main:
// Configure clock speed

// Configure peripherals (GPIO)

// Your program logic goes here!

stop: B stop // dead loop & program hangs here

Lab 1 - Part 2 4/15ENSC 3213: Computer-based Systems

Load Constant Values into Registers
● You can use R0 to R12 to hold your “variables”.
● MOV Rd, #<immed_8>

– Loads a 8-bit immediate value (constant) to the register.

– Example:

● MOV R0, #0xFF

● R0 is now equal to 255 in decimal.

● LDR Rd, =<immed_8> or LDR Rd, =#<immed_8>
– Loads a 8-bit immediate value (constant) to the register.

– Example:

● LDR R0, =0xFF or LDR R0, =#0xFF

● R0 is now equal to 255 in decimal.

● LDR Rd, =<immed_32> or LDR Rd, =#<immed_32>
– Pseudo-instruction. Loads a 32-bit immediate value (constant) to the register.

Lab 1 - Part 2 5/15ENSC 3213: Computer-based Systems

Simple Addition in Assembly
● ADD {Rd,} Rn, Op2

– Does NOT update NZCV flags.

● ADDS {Rd,} Rn, Op2
– Updates NZCV flags.

.syntax unified

.global main

main:
MOV R0, #10 // R0 = 10 (decimal)
MOV R1, #1 // R1 = 1 (decimal)

ADD R0, R0, R1 // R0 = R0 + R1 = 11

stop: B stop // dead loop & program hangs here

Lab 1 - Part 2 6/15ENSC 3213: Computer-based Systems

Bitwise Operations in Assembly
● R0 = 0xA2; R1 = 0x34;

R0 10100010

R1 00110100

AND R2, R0, R1 00100000

R0 10100010

R1 00110100

ORR R2, R0, R1 10110110

R0 10100010

R1 00110100

EOR R2, R0, R1 10010110

R0 10100010

MVN R2, R0 01011101

R0 10100010

R0>>2 00101000

LSR R0, #2

R0 10100010

R0<<2 10001000

LSL R0, #2

AND OR EXCLUSIVE OR

NOT SHIFT RIGHT SHIFT LEFT

Lab 1 - Part 2 7/15ENSC 3213: Computer-based Systems

Masking

7

● With computers, sometimes bits are used to mask bits. That is, they are
utilized to turn bits ON or OFF.

● Typically, OR is used to turn items ON (or set) a bit and AND is utilized to turn
items OFF (or clear) a bit.

● https://en.wikipedia.org/wiki/Mask_(computing)

https://en.wikipedia.org/wiki/Mask_(computing)

Lab 1 - Part 2 8/15ENSC 3213: Computer-based Systems

Masking

8

● Masking example:
– Suppose A holds an unknown binary number.

– You want to turn ON all bits in A, but you don’t want change the unknown value in bit 3.

– This operation can be performed by using a bitwise OR operation with a MASK variable equal to
11110111.

A → R0 ????????

MASK → R1 11110111

ORR R0, R0, R1

A → R0 = 1111?111

Bit 3 does not change and
it is still unknown.

Lab 1 - Part 2 9/15ENSC 3213: Computer-based Systems

Masking

9

● Masking example:
– Now, using the final A value from the previous slide, suppose you want to turn OFF bit 3 in A.

– This operation can be performed by using a bitwise NOT operation, followed by a bitwise AND
operation, with a MASK variable equal to 00001000.

A → R0 1111?111

MASK → R1 00001000

MVN R1, R1
AND R0, R0, R1

A → R0 = 11110111

Now, bit 3 is equal to
zero.

Lab 1 - Part 2 10/15ENSC 3213: Computer-based Systems

Masking – Checking a bit

10

a7 a6 a5 a4 a3 a2 a1 a0
0 0 1 0 0 0 0 0

0 0 a5 0 0 0 0 0AND R2, R0, R1

MASK→ R1

a → R0

Uses bitwise AND.

Lab 1 - Part 2 11/15ENSC 3213: Computer-based Systems

Masking – Setting a bit

11

a7 a6 a5 a4 a3 a2 a1 a0
0 0 1 0 0 0 0 0

a7 a6 1 a4 a3 a2 a1 a0ORR R0, R0, R1

MASK→ R1

a → R0

Uses bitwise OR.

Lab 1 - Part 2 12/15ENSC 3213: Computer-based Systems

Masking – Clearing a bit

12

a7 a6 a5 a4 a3 a2 a1 a0
0 0 1 0 0 0 0 0

a7 a6 0 a4 a3 a2 a1 a0BIC R0, R1

MASK→ R1

a → R0

Uses bitwise NOT, followed by bitwise AND.

The BIC instruction incorporates the NOT
and AND in a single instruction.

Lab 1 - Part 2 13/15ENSC 3213: Computer-based Systems

Masking – Toggling a bit

13

a7 a6 a5 a4 a3 a2 a1 a0
0 0 1 0 0 0 0 0

a7 a6 NOT (a5) a4 a3 a2 a1 a0EOR R0, R0, R1

MASK→ R1

a → R0

Uses bitwise EXCLUSIVE-OR (XOR).

Lab 1 - Part 2 14/15ENSC 3213: Computer-based Systems

Lab Assignment

● Go to Canvas and answer all FIVE questions in the following assignment: Lab 2 –
Week 2.
● Canvas will automatically grade your work! You don’t need to show your work to the T.A.!

● The T.A. will help you with any problem you may face while answering the Canvas quiz.

● All questions should be answered with the help of the debugging environment in the STM32CubeIDE.

● Don’t forget to use Tutorial 4 – Debugging to help you!

● Create a project from scratch, a main.s file from scratch, and use the concepts you learned today.

● We are not interfacing any hardware with the development kit today. So, you don’t need to use any
include file.

Lab 1 - Part 2 15/15ENSC 3213: Computer-based Systems

Next Class

● Lab 2 – Pre-lab Quiz is due next class! Pre-lab Quiz is available on Canvas!

● Lab 2 – Interfacing the joystick with the LEDs:
● Lab lecture: Introduction to General Purpose Input and Output (GPIO).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

