ENSC 3213: Computer-based Systems

Lab 1 — Part 2: Debugging and Basic Assembly

Instructor:
Dr. Carl Latino
carl.latino@okstate.edu

Graduate Teaching Assistant:
Francisco E. Fernandes Jr.
feferna@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University
Fall 2019

Lab 1 - Part 2 1/15


mailto:carl.latino@okstate.edu
mailto:feferna@okstate.edu

Today's Goals

* Addition using Assembly programming.
* Bitwise Operations and Masking.
 Learn how to debug your program.

* Write a small assembly program.

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Basic Assembly program — main.s

.syntax unified
.global main
.include "stm321476xx_constants.s"

main:
// Configure clock speed

// Configure peripherals (GPIO)

// Your program logic goes here!

stop: B stop // dead loop & program hangs here

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Load Constant Values into Registers

* You can use RO to R12 to hold your “variables".
e MOV Rd, #<immed 8>

- Loads a 8-bit immediate value (constant) to the register.

- Example:
MOV RO, #OXFF

RO is now equal to 255 in decimal.
e LDR Rd, =<immed_8> or LDR Rd, =#<immed 8>
- Loads a 8-bit immediate value (constant) to the register.

- Example:
LDR RO, =OxFF or LDR RO, =#OXFF

RO is now equal to 255 in decimal.

e LDR Rd, =<immed_32> or LDR Rd, =#<immed_32>

- Pseudo-instruction. Loads a 32-bit immediate value (constant) to the register.

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Simple Addition in Assembly

. ADD {Rd,} Rn, Op2

— Does NOT update NZCV flags.
. ADDS {Rd,} Rn, Op2

- Updates NZCV flags.

.syntax unified

.global main

main:
MOV RO, #10 // RO = 10 (decimal)
MOV R1, #1 // Rl = 1 (decimal)
ADD RO, RO, R1 // R = RO + R1 = 11
stop: B stop // dead loop & program hangs here

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



e RO = OxA2;
AND
RO
R1

AND R2, RO, R1

NOT
RO

MVN R2, RO

R1 = 0x34;
OR
10100010 RO 10100010
00110100 R1 00110100
00100000 ORR R2, RO, R1 10110110
SHIFT RIGHT
10100010 RO 10100010
91011101 RO>>2 00101000
LSR RO, #2

Lab 1 - Part 2

ENSC 3213: Computer-based Systems

EXCLUSIVE OR

Bitwise Operations in Assembly

RO 10100010
R1 00110100
EOR R2, RO, R1 10010110
SHIFT LEFT
RO 10100010
RO<<2 10001000
LSL RO, #2



With computers, sometimes bits are used to mask bits. That is, they are
utilized to turn bits ON or OFF.

Typically, OR is used to turn items ON (or set) a bit and AND is utilized to turn
items OFF (or clear) a bit.

* https://en.wikipedia.org/wiki/Mask (computing)

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



https://en.wikipedia.org/wiki/Mask_(computing)

* Masking example:

Suppose A holds an unknown binary number.
You want to turn ON all bits in A, but you don’t want change the unknown value in bit 3.

This operation can be performed by using a bitwise OR operation with a MASK variable equal to
11110111.

A > RO 2?22?2222

MASK -» R1 11110111
ORR RO, RO, R1
A » RO = 1111?2111

\ Bit 3 does not change and
it is still unknown.

Lab 1 - Part 2 ENSC 3213: Computer-based Systems




* Masking example:
— Now, using the final A value from the previous slide, suppose you want to turn OFF bit 3 in A.

— This operation can be performed by using a bitwise NOT operation, followed by a bitwise AND
operation, with a MASK variable equal to 00001000.

A - RO 11112111
MASK -» R1 00001000

MVN R1, R1
AND RO, RO, R1

A - RO = 11110111

\ Now, bit 3 is equal to

Zero.

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Masking — Checking a bit

Uses bhitwise AND.

a > Ro d, dg Ch d, CH d, CH dg
MASK- R1 0 0 1
AND R2, RO, R1 9 9 a;

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Uses bitwise OR.

a - RO d, dg Ch d, CH d,

MASK> R1 @ 0 1 0 0 0
ORR RO, RO, R1 ¥

Lab 1 - Part 2

Masking — Setting a bit

a1 a0
%) %)
a, a,

ENSC 3213: Computer-based Systems



Masking — Clearing a bit

Uses bitwise NOT, followed by bitwise AND.

a > Ro d, dg Ch d, CH d, CH dg
MASK- R1 0 (%) 1 (% 0 0 0 0
BIC RO, R1 d; dg 0 d, ds d, d; do

The BIC instruction incorporates the NOT
and AND in a single instruction.

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Masking — Toggling a bit

Uses bitwise EXCLUSIVE-OR (XOR).

a -> RO a; dg a; CH d3 a, CH Ch
MASK- R1 (4] (%] 1 (%] (%] 0 0 0
EOR RO, RO, R1 d; a; NOT(a;) 3, CH d, d; do

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Lab Assignment

* Go to Canvas and answer all FIVE questions in the following assignment: Lab 2 —
Week 2.

Canvas will automatically grade your work! You don’t need to show your work to the T.A.!
The T.A. will help you with any problem you may face while answering the Canvas quiz.
All questions should be answered with the help of the debugging environment in the STM32CubelDE.

e Don't forget to use Tutorial 4 — Debugging to help you!

Create a project from scratch, a main.s file from scratch, and use the concepts you learned today.

We are not interfacing any hardware with the development kit today. So, you don’t need to use any
include file.

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



Next Class

 Lab 2 - Pre-lab Quiz is due next class! Pre-lab Quiz is available on Canvas!

* Lab 2 - Interfacing the joystick with the LEDs:

« Lab lecture: Introduction to General Purpose Input and Output (GPIO).

Lab 1 - Part 2 ENSC 3213: Computer-based Systems



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

