
Lab 1 - Interfacing Joystick and LED

Graduate Teaching Assistant:

Francisco E. Fernandes Jr.

feferna@okstate.edu

School of Electrical and Computer Engineering

Oklahoma State University

Fall 2018

ENSC 3213: Computer Based Systems

Lab 1 1

mailto:feferna@okstate.edu

ENSC 3213: Computer Based Systems

• Get familiar with the STM32L476-Discovery kit and Keil
uVision software development environment;

• Light up the blue and green LEDs when the user push a
joystick position using C language.

Lab 1 2

Objectives

ENSC 3213: Computer Based Systems

• New board:
• STM32L476 Discovery (ARM Cortex M4 microcontroller)

• This board is used in the textbook’s third edition

Lab 1 3

Announcement

ENSC 3213: Computer Based Systems

• Dr. Gong will not enforce the use of the textbook’s third
edition.

• Despite the third edition being based on the new board.
There is few changes between first and third editions. The
main differences are on the use of register constants and
memory positions.

• However, register constants and memory positions can be
found on the header file included with the labs (*.h).

Lab 1 4

Announcement

#define RCC_AHBENR_GPIOBEN (0x00000002)
RCC->AHBENR |= RCC_AHBENR_GPIOBEN;

#define RCC_AHB2ENR_GPIOBEN (0x00000002)
RCC->AHB2ENR |= RCC_AHB2ENR_GPIOBEN;

Enable the clock of GPIO port B on the first edition

Enable the clock of GPIO port B on the third edition

ENSC 3213: Computer Based SystemsLab 1 5

STML32L476 Discovery

ENSC 3213: Computer Based SystemsLab 1 6

STML32L476 Discovery

ENSC 3213: Computer Based SystemsLab 1 7

STML32L476 Discovery

ENSC 3213: Computer Based Systems

• A = 0xa2; B = 0x34;

Lab 1 8

Bitwise Operations in C

A 10100010

B 00110100

A & B 00100000

A 10100010

B 00110100

A | B 10110110

A 10100010

B 00110100

A ^ B 10010110

A 10100010

~ A 01011101

A 10100010

A>>2 00101000

A 10100010

A<<2 10001000

AND OR EXCLUSIVE OR

NOT SHIFT RIGHT SHIFT LEFT

ENSC 3213: Computer Based Systems

Don’t confuse the bitwise operators & and | with the Boolean
(sometimes associated with logical) operators && and ||.

• The Boolean operations are:
• A && B (Boolean and)
• A || B (Boolean or)
• !B (Boolean not)

• The Boolean operations are word-wide operations, not bit-
wise operations.

• Example 1:
• “0x10 & 0x01” equals to 0x00
• But “0x10 && 0x01” equals to 0x01 (Logic True)

• Example 2:
• “~0x01” equals 0xFE
• But “!0x01” equals to 0x00

Lab 1 9

Bit Operators (&, |, ~) vs Boolean Operators (&& ,||, !)

ENSC 3213: Computer Based Systems

• With computers, sometimes bits are used to mask bits.
That is, they are utilized to turn bits ON or OFF

• Notice that B is utilized to turn all the bits ON except bit
3, which is kept at its original value.

• Typically, OR is used to turn items ON or set a bit and
AND is utilized to turn items OFF or clear a bit.

• You can also use the original value to turn itself ON or
OFF.

• https://en.wikipedia.org/wiki/Mask_(computing)

Lab 1 10

Masking

A 10100010

B 11110111

A | B 11110111

https://en.wikipedia.org/wiki/Mask_(computing)

ENSC 3213: Computer Based SystemsLab 1 11

Check a bit

bit = a & (1<<k)

Example: k = 5

a7 a6 a5 a4 a3 a2 a1 a0

0 0 1 0 0 0 0 0

0 0 a5 0 0 0 0 0a & (1<<k)

1 << k

a

ENSC 3213: Computer Based SystemsLab 1 12

Set a Bit

a = a | (1 << k)
or

a7 a6 a5 a4 a3 a2 a1 a0

0 0 1 0 0 0 0 0

a7 a6 1 a4 a3 a2 a1 a0

Example: k = 5

a

1 << k

a | (1 << k)

• In C, operators can be utilized as a
shortcut for an operator.

• For example, a += 1 states a = a +1.

a |= (1 << k)

ENSC 3213: Computer Based SystemsLab 1 13

Clear a bit

a &= ~(1<<k)

a7 a6 a5 a4 a3 a2 a1 a0

1 1 0 1 1 1 1 1

a7 a6 0 a4 a3 a2 a1 a0

Example: k = 5

a

~(1 << k)

a & ~(1<<k)

ENSC 3213: Computer Based SystemsLab 1 14

Toggle a bit

a ^= 1<<k

a7 a6 a5 a4 A3 a2 a1 a0

0 0 1 0 0 0 0 0

a7 a6 NOT(a5) A4 a3 a2 a1 a0

Example: k = 5

a

1 << k

a ^= 1<<k

a5 1 a5⊕1

0 1 1

1 1 0

Truth table of Exclusive
OR with one

Without knowing the initial value, a bit can be toggled by XORing it with a “1”

An exclusive or is useful to
see if a bit changes from its
previous value, since its 1 iff
the value different from its
previous value.

ENSC 3213: Computer Based Systems

• Each GPIO port has

• Four 32-bit control registers:

• GPIO_MODER (digital input, digital output, alternative function, analog input/output)

• GPIO_OTYPER (output type: push-pull or open-drain)

• GPIO_OSPEEDR(speed, i.e., slew rate)

• GPIO_PUPDR (pull-up/pull-down)

• One 32-bit input data register (GPIO_IDR) and one 32-bit ouput data register (GPIO_ODR):

• Each bit holds the input/ouput value of one GPIO pin

• Two 32-bit alternative function selection registers (GPIO_AFRH, GPIO_AFRL)

• Clock to GPIO are turned off by default to save power

• Software program needs to turn on the clock

• The red LED is connected to GPIO port B and green LED is connected to GPIO

port E

• The Joystick is connected to GPIO port A

Lab 1 15

General-Purpose Input and Output (GPIO)

ENSC 3213: Computer Based SystemsLab 1 16

General-Purpose Input and Output (GPIO)

ENSC 3213: Computer Based SystemsLab 1 17

Lab 1: step-by-step

1. Enable the clock to GPIO port A, B and E

2. Configure PB2 (blue LED) and PE8 (green LED) as output

3. Configure PB2 and PE8 as push-pull mode

4. Configure PB2 and PE8 output type as No Pull-up No
Pull-down

5. Configure PA3 as input

6. Configure PA3 as No Pull-up No Pull-down

7. Wait until the Joystick UP position is pushed

ENSC 3213: Computer Based SystemsLab 1 18

Thank you!

