

Introduction to Deep Neural Networks

Speaker:

Francisco Erivaldo Fernandes Junior
Ph.D. Candidate in Electrical Engineering
feferna@okstate.edu

Instructor:

Dr. Gary G. Yen
Regents Professor
gyen@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University
October 29, 2019

Introduction and Motivation

Brief History – First Developments and AI Winter

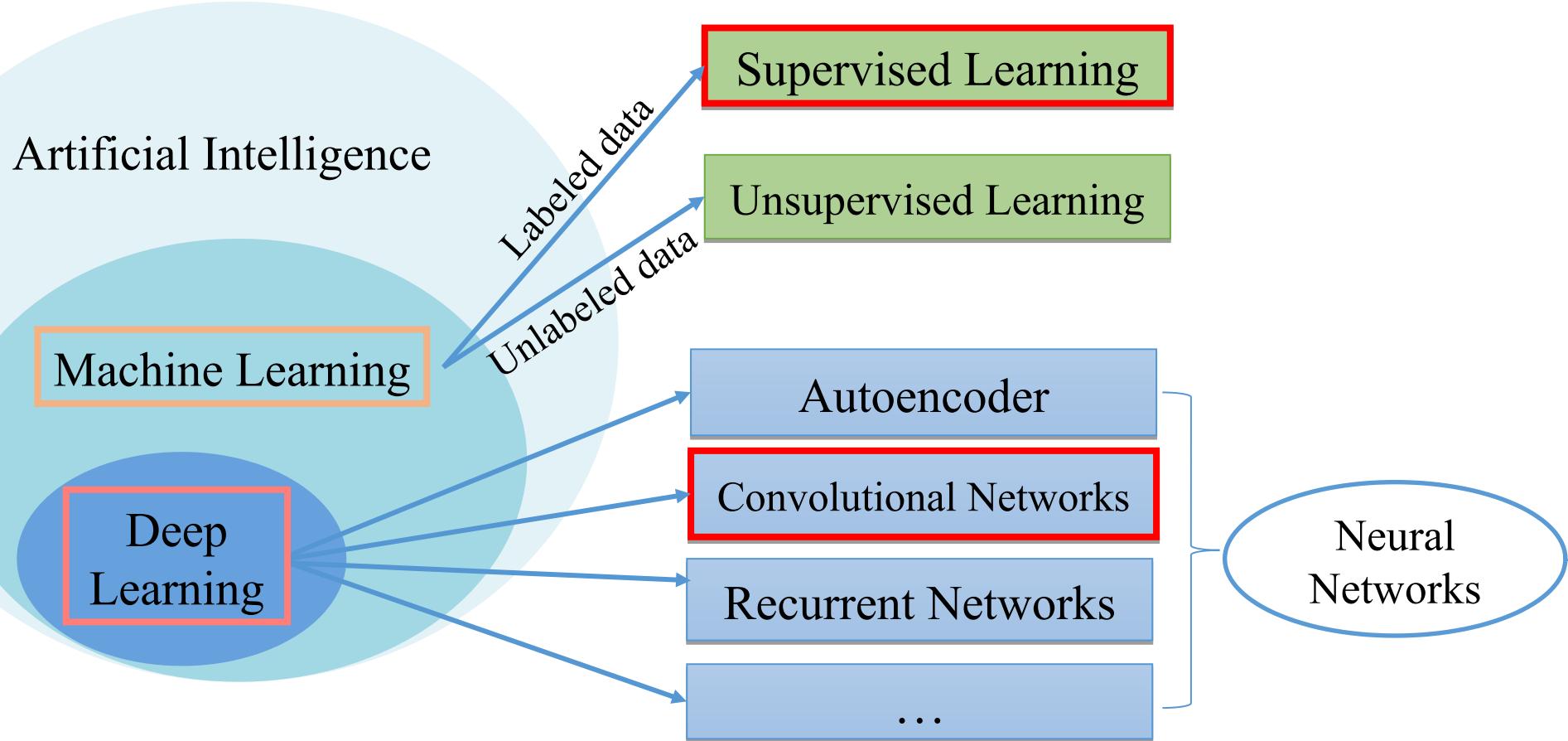
- **McCulloh and Pitts (1943)**: First mathematical description of how neuron cells might work.
- **Hebb (1949)**: First description of learning in animal brains.
- **Widrow and Hoff (1960)**: First application of neural networks to solve a real world problem.
- **Widrow and Hoff (1962)**: Development of the first learning algorithm for use with neural networks.
- **Minsky (1969)**: Presented rigorous mathematical analysis showing that early neural networks could not solve linearly separable problems, such as a XOR function.
- **Between 1969 and 1982**: The interest in neural networks quickly died off due to limitations in the types of problems they could solve. This period is sometimes called the AI winter.

Brief History – Neural Network Renaissance

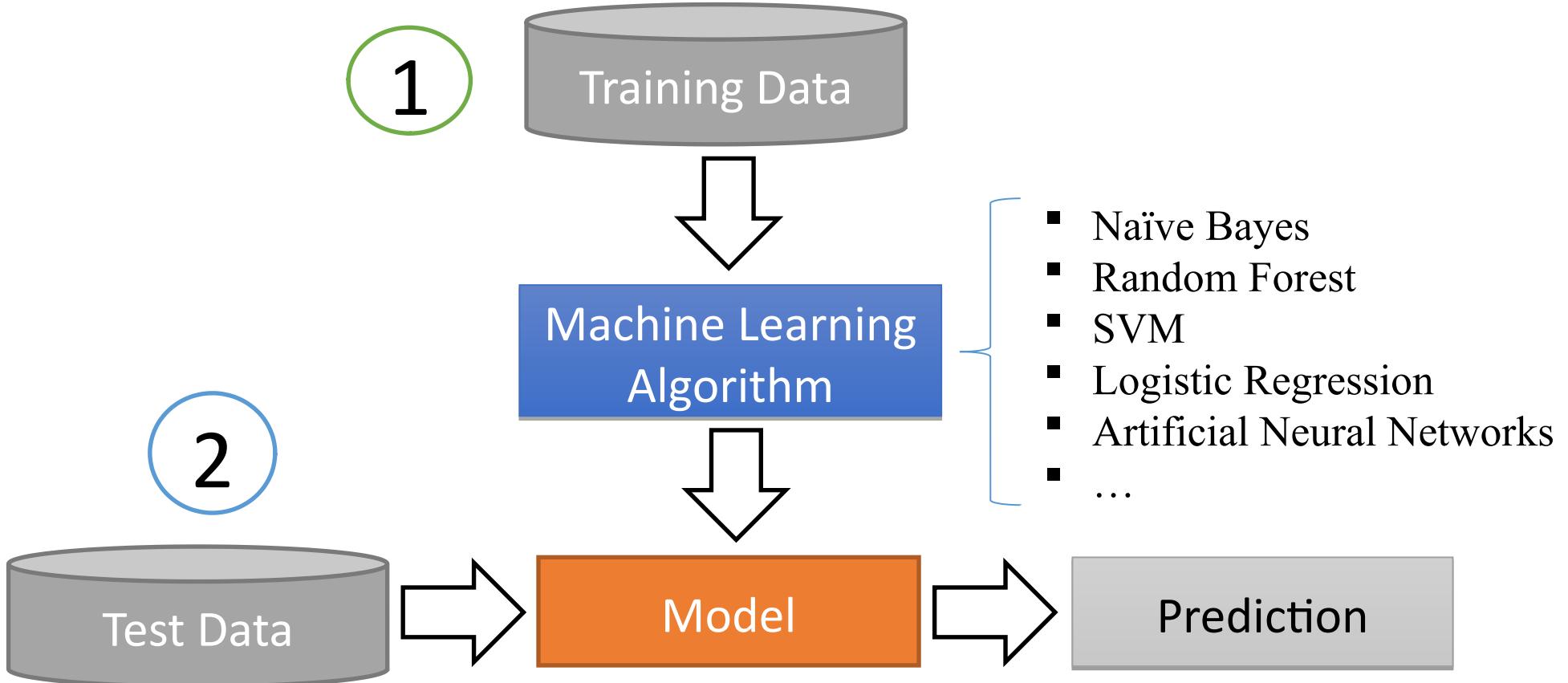
- **From 1982 to 1985:** First development of the backpropagation algorithm allowing the automatic training of multi-layer neural networks.
- **Lecun (1998):** Development of the Convolutional Neural Network (CNNs) to solve pattern recognition problems.
- **From 1985 to 2000:** Most of the current theory used in the field of deep learning was developed during this time period, such as training algorithms and recurrent neural networks.
- However, the years **from 2000 to 2010** were another slow decade in the field of neural networks due to the lack of data and processing power to train networks in challenging real-world problems.

Brief History – The Deep Learning Era

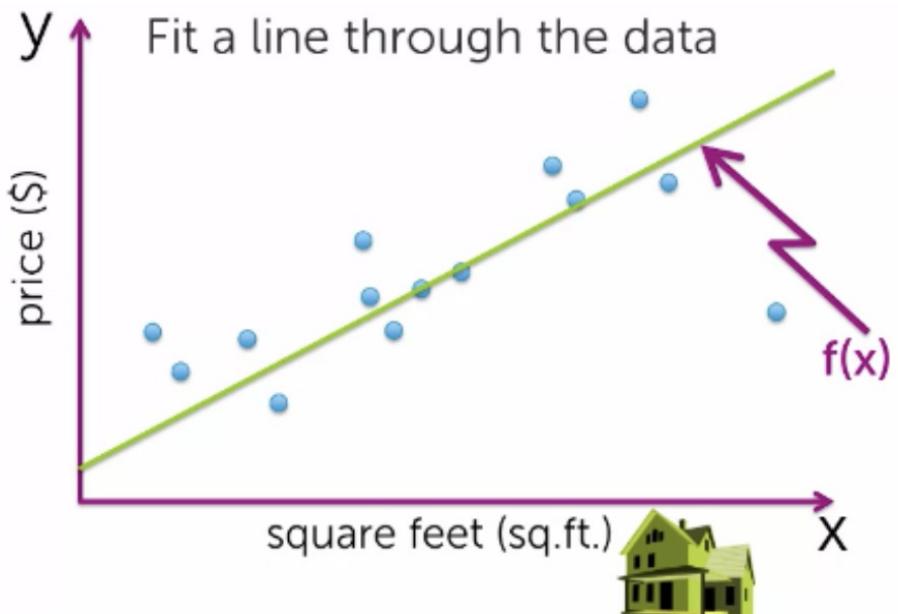
- **Nvidia (2007):** Development of CUDA which allows the programming of Graphical Computer Units (GPUs) to perform general computations.
- **Big Data (around 2008):** The deployment of high-speed internet connections around the globe made it possible to amass data in amounts never seen in human history before.
- **ImageNet Dataset (2009):** One of the first datasets used for image classification tasks with millions of data points. No machine learning model at the time was capable of achieving more than 75% of accuracy.
- **Krizhevsky (2012):** First Deep Convolutional Neural Network model to win the ImageNet Challenge.
- **From 2012 to Now:** Further availability of data and processing power allowed the development of huge deep neural network (DNNs) models, such as Residual Networks, Dense Networks, and Recurrent Networks.



Supervised Learning



Collect data -> split it to train/test sets -> training a model -> evaluate & deploy



The **goal** of supervised learning is to learn a model from **training data**, and use the learned model to predict unseen data (**test data**).

Let: x represents *square feet*, and y represents *price*, then we have:

Training data:

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$

Test data:

$$(x_{n+1}, y_{n+1}), (x_{n+2}, y_{n+2}), \dots, (x_{n+m}, y_{n+m})$$

Thus, this linear model can be represented as:
$$y_i = f(x_i) = w \cdot x_i + b$$

Challenge for High Dimensional Data

- **Features** may be **redundant** or **irrelevant** resulting in **poor performance** of a machine learning model.

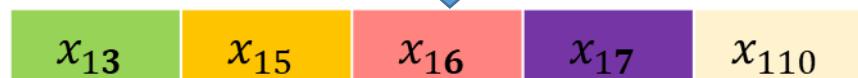
Square feet	Beds	Pets, Garden plants, Garbage can, ...	Price
x_{11}	x_{12}	...	y_1
x_{21}	x_{22}	...	y_2
...

Data:

$$([x_{11}, x_{12}, \dots, x_{1i}], y_1),$$
$$([x_{21}, x_{22}, \dots, x_{2i}], y_2),$$
$$\dots,$$
$$([x_{n1}, x_{n2}, \dots, x_{ni}], y_n),$$

Feature Extraction

- Domain knowledge
- Simulated annealing
- Genetic algorithm
- ...



Challenge for High Dimensional Data

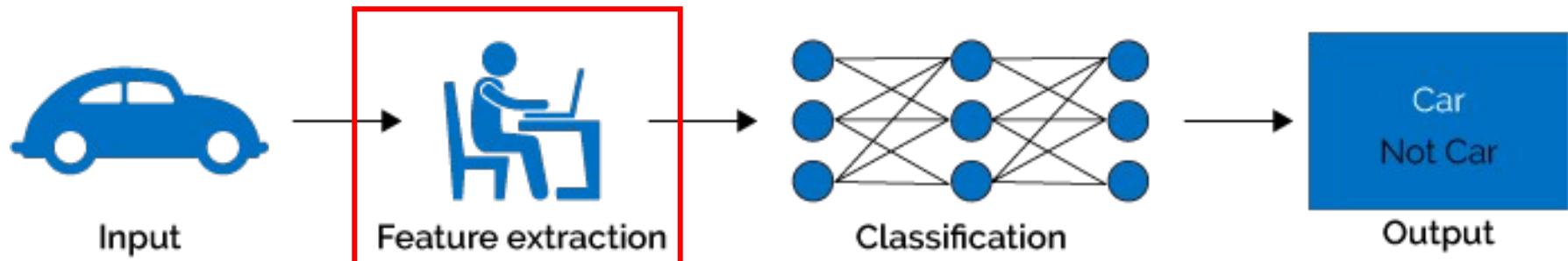
- Images are examples of highly dimensional data.

Input Image

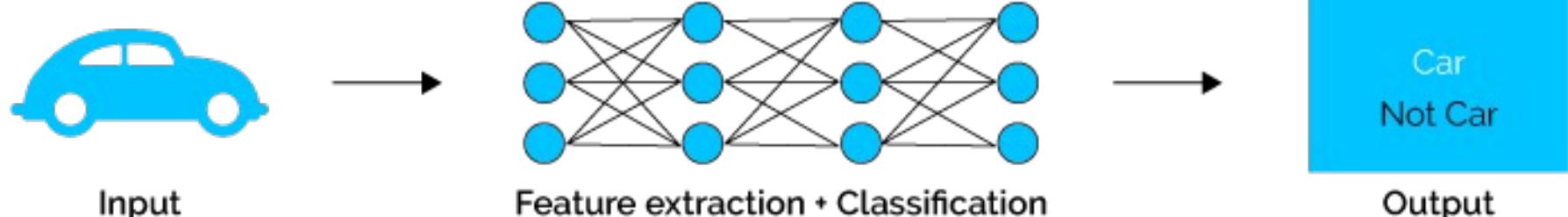
Source : <http://www.thedailystar.net/>

Desired features (edges)

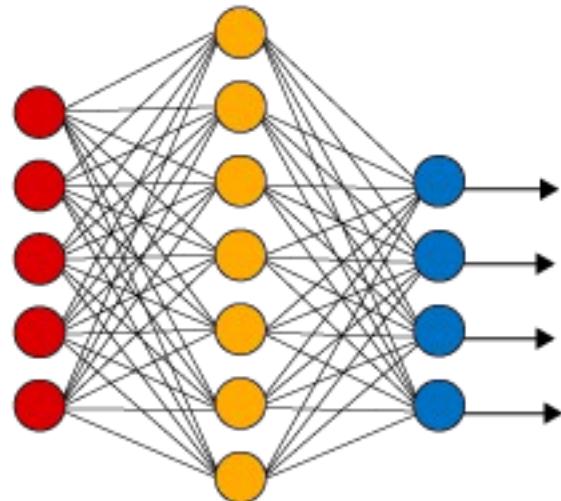
Machine Learning



Deep Learning



Simple Neural Network

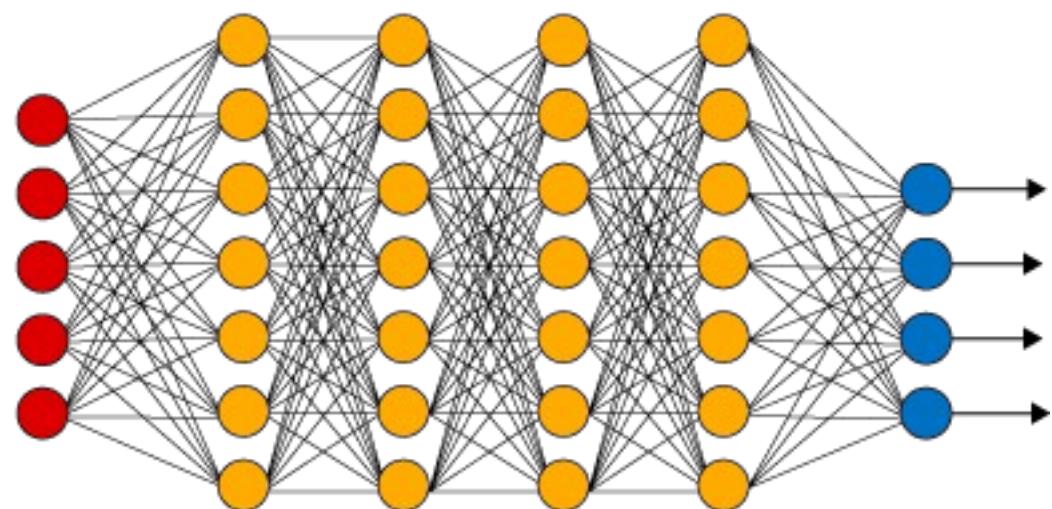


● Input Layer

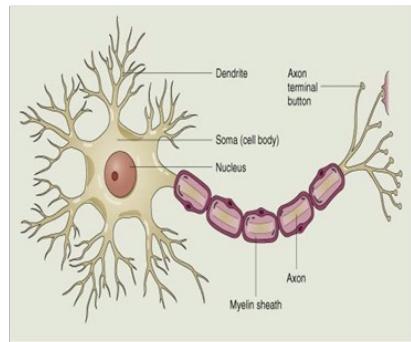
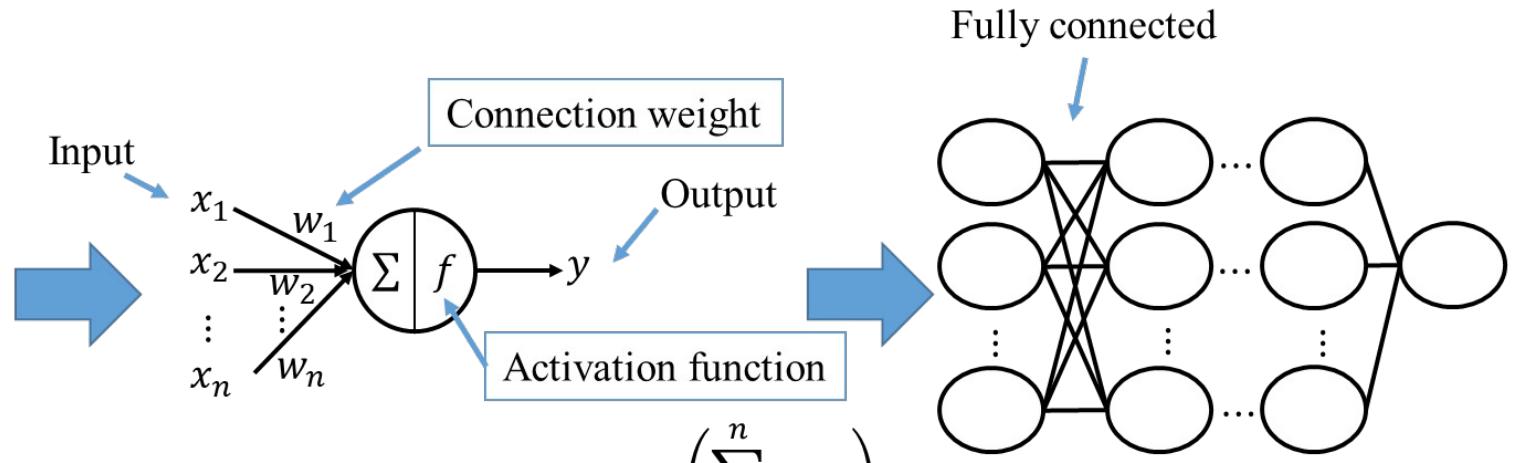
● Hidden Layer

● Output Layer

Deep Learning Neural Network



- Bio-inspired computational models



$$y = f(w_1x_1 + w_2x_2 + \dots + w_nx_n) = f\left(\sum_{i=1}^n w_i x_i\right)$$

$$y = f_n(f_{\dots}(f_2(f_1(x, w^1), w^2), w^{\dots}), w^n)$$

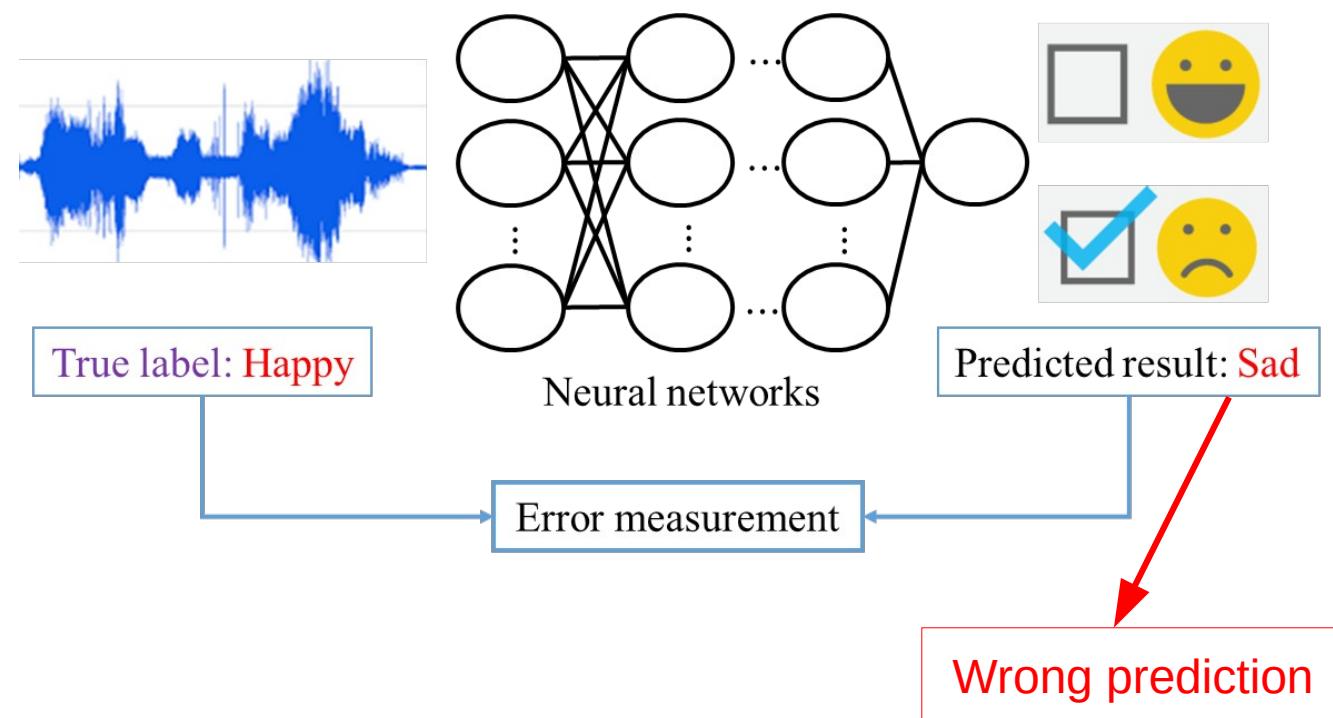
Biological neuron in brain

Computational model of a neuron

A neural network with n layers

Learning in Neural Networks

- Voice sentiment analysis

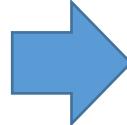


Gradient-based Learning:

- 1) Initialize connection weights.
- 2) Compute output (predicted result) for given input data.
- 3) Measure error between predicted result and true label.
- 4) Calculate gradients of the error w.r.t. connection weights.
- 5) Update weights of NN using gradients to decrease error until converge (error back propagation).

With given data x and its label \bar{y} from a dataset

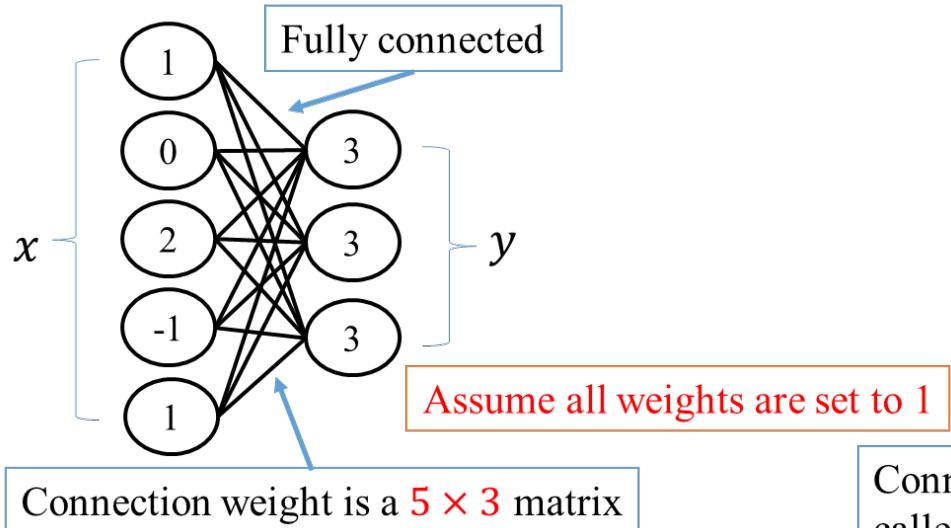
1. Initialize connection weights.
2. Compute output (predicted result) for given input data (forward pass).
3. Measure error between predicted result and true label.
4. Calculate gradients of the error w.r.t. connection weights (backward pass).
5. Update weights of NN using gradients Until the error converge.



1. Initialize w_1, w_2, \dots, w_n
2. $y = f_n(f_{\dots}(f_2(f_1(x, w_1), w_2), w_{\dots}), w_n)$
3. $error = ||y - \bar{y}||$
4. $\Delta w_i = \frac{\partial error}{\partial w_i}$ (backpropagation)
5. $w_i = w_i - \alpha \cdot \Delta w_i$

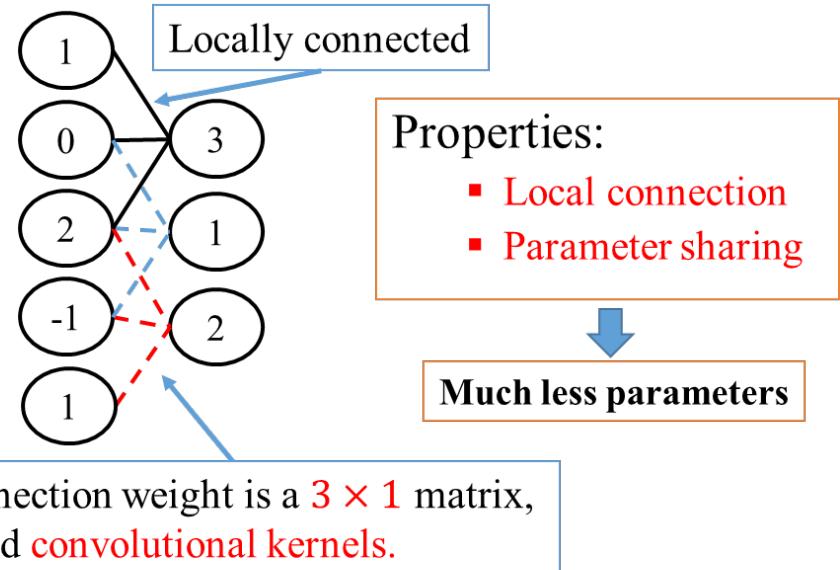
Convolutional Neural Networks (CNNs)

- Properties of CNN: local connection and parameter sharing



$$y_j = \sum_{i=1}^n w_{ij} x_i$$

Fully connected neural network

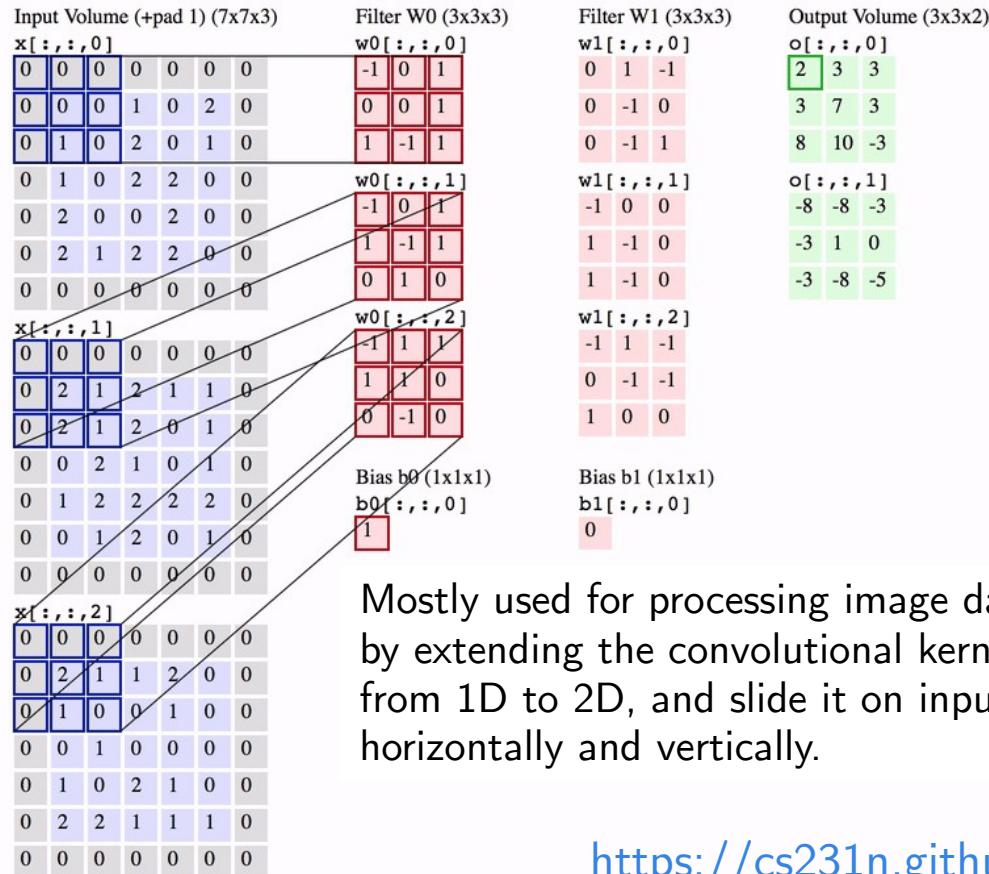


$$y_j = \sum_{i=1}^k w_{i1} x_{j+i-1}$$

1D convolutional neural network

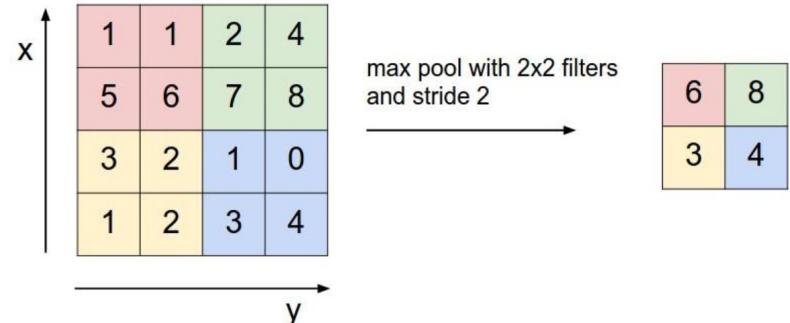
Convolutional Neural Networks (CNNs)

2D convolutional operations



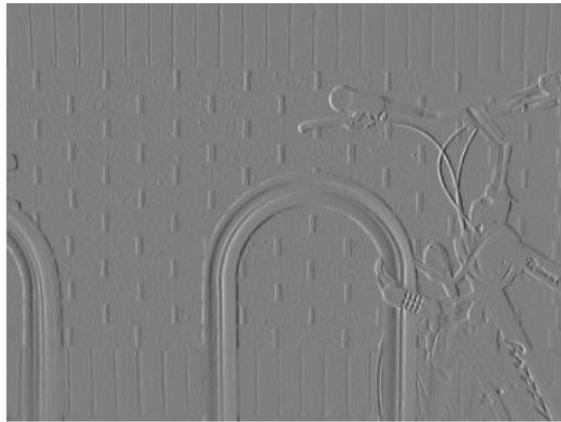
Mostly used for processing image data by extending the convolutional kernel from 1D to 2D, and slide it on input horizontally and vertically.

Max pooling (Nonparametric)



Convolution Kernels (Filters)

Original image



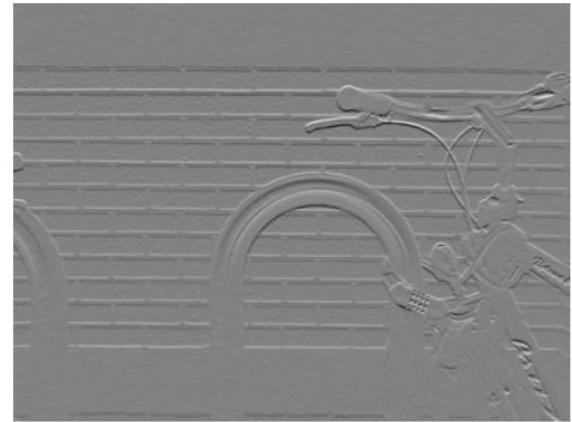
Convolution for finding
vertical edges

Vertical edge filter:

$$\begin{bmatrix} [-1, 0, 1], \\ [-2, 0, 2], \\ [-1, 0, 1] \end{bmatrix}$$

Horizontal edge filter:

$$\begin{bmatrix} [-1, -2, -1], \\ [0, 0, 0], \\ [1, 2, 1] \end{bmatrix}$$

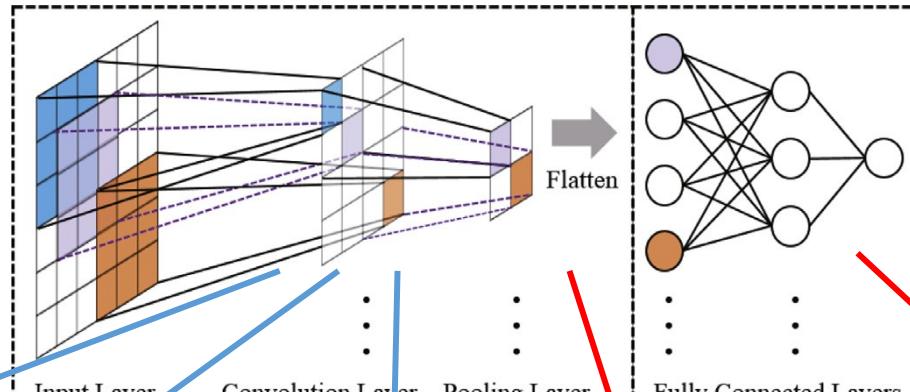


Convolution for finding
horizontal edges

Convolution Kernels Can Be Found from Data

Gradient based learning

Hierarchical features in CNN layers (e.g., face detection).



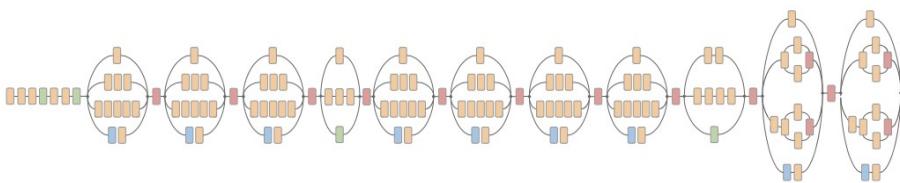
Convolution layers learn to extract features

Fully-Connected layers learn to classify features

Deep Neural Networks Applications

Diagnose skin cancer at dermatologist-level

Skin lesion image



- Convolution
- AvgPool
- MaxPool
- Concat
- Dropout
- Fully connected
- Softmax

Deep convolutional neural network (Inception v3)

Training classes (757)

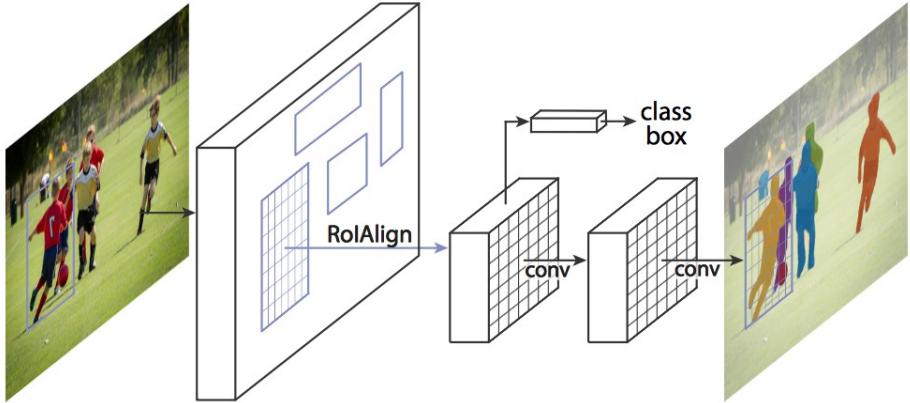
- Acral-lentiginous melanoma
- Amelanotic melanoma
- Lentigo melanoma
- ...
- Blue nevus
- Halo nevus
- Mongolian spot
- ...
- ...
- ...

Inference classes (varies by task)

- 92% malignant melanocytic lesion
- 8% benign melanocytic lesion

130,000 skin lesion images comprised of over 2,000 diseases

Object detection & segmentation



identify each object in pixel-level

Autonomous Driving Cars

<http://selfdrivingcars.mit.edu>

Image-to-Image Translation

summer → winter

winter → summer

Hand-crafted State-of-the-Art DNN Architectures

Benchmark Datasets

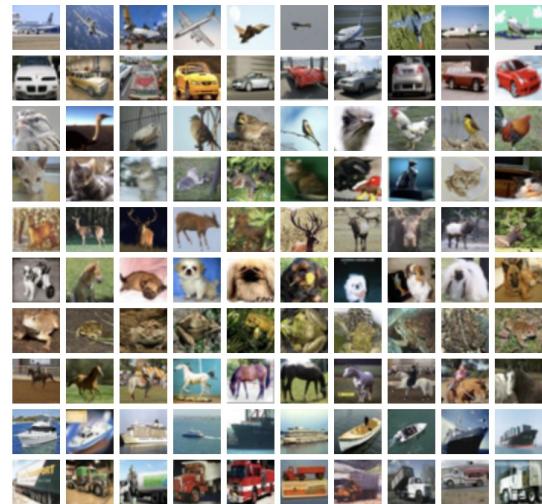
MNIST

Images: 70,000

Categories: 10

<http://yann.lecun.com/exdb/mnist/>

CIFAR-10



Images: 60,000

Categories: 10

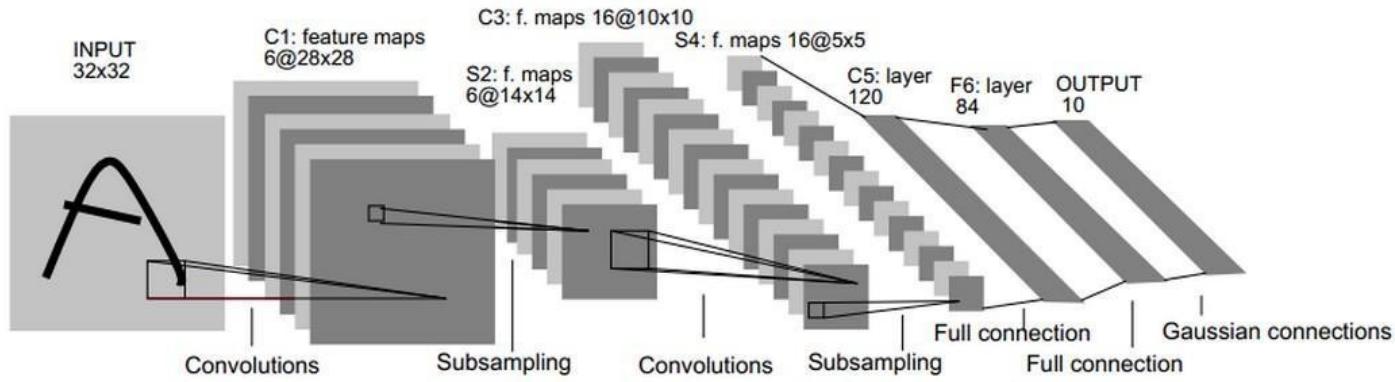
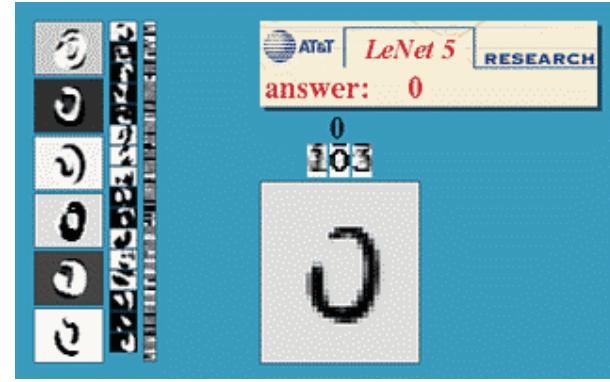
<https://www.cs.toronto.edu/~kriz/cifar.html>

ImageNet

Images: 14,197,122

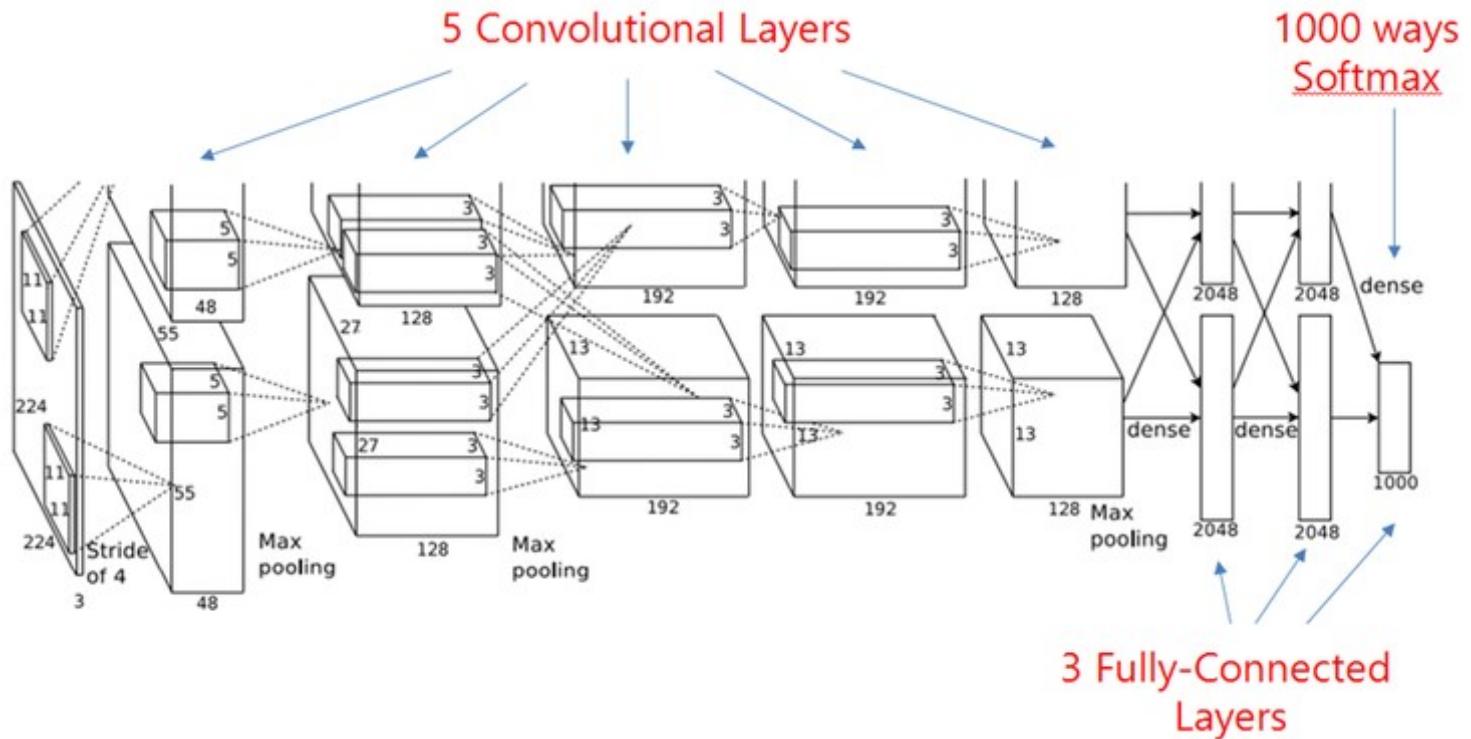
Categories: 1,000

<http://image-net.org>

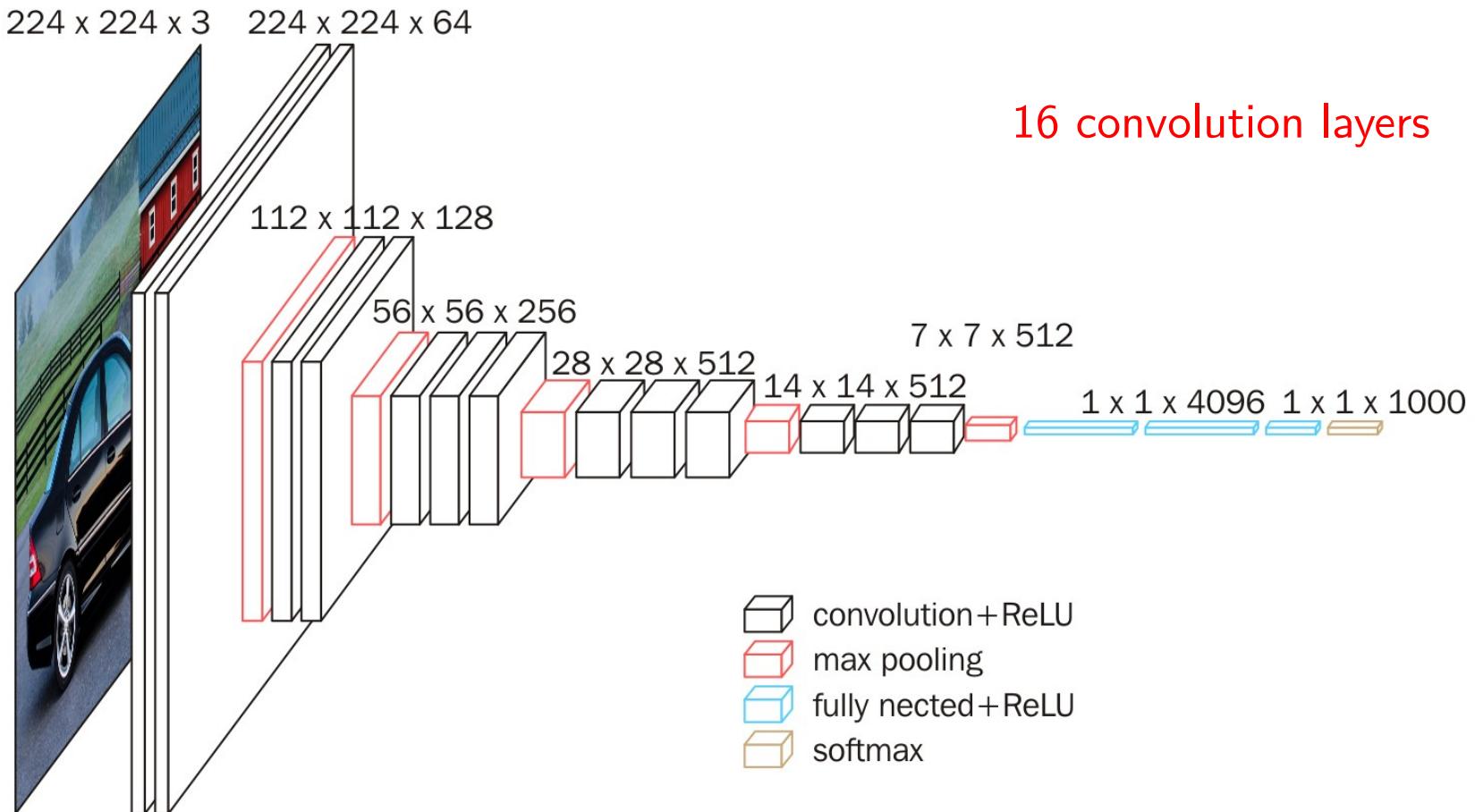


Only two convolution layers

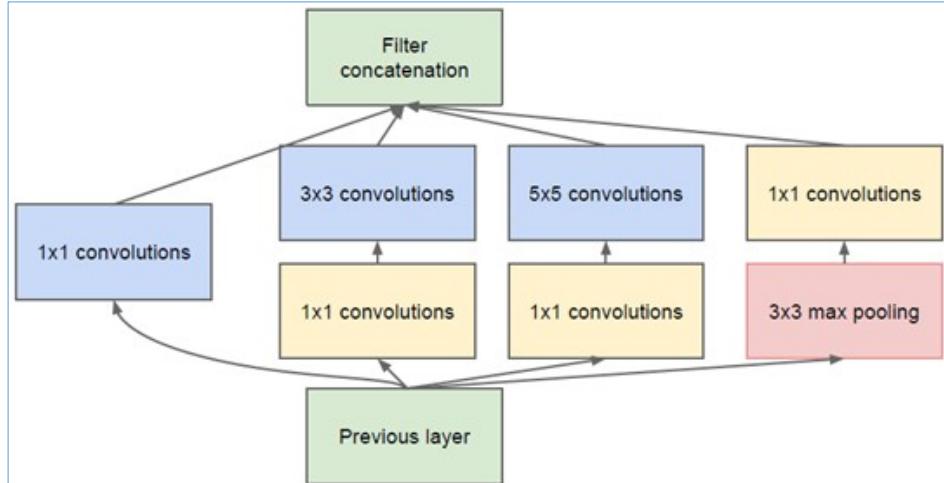
Lenet-5 for hand-written digits recognition



Won the ImageNet Challenge in **2012**

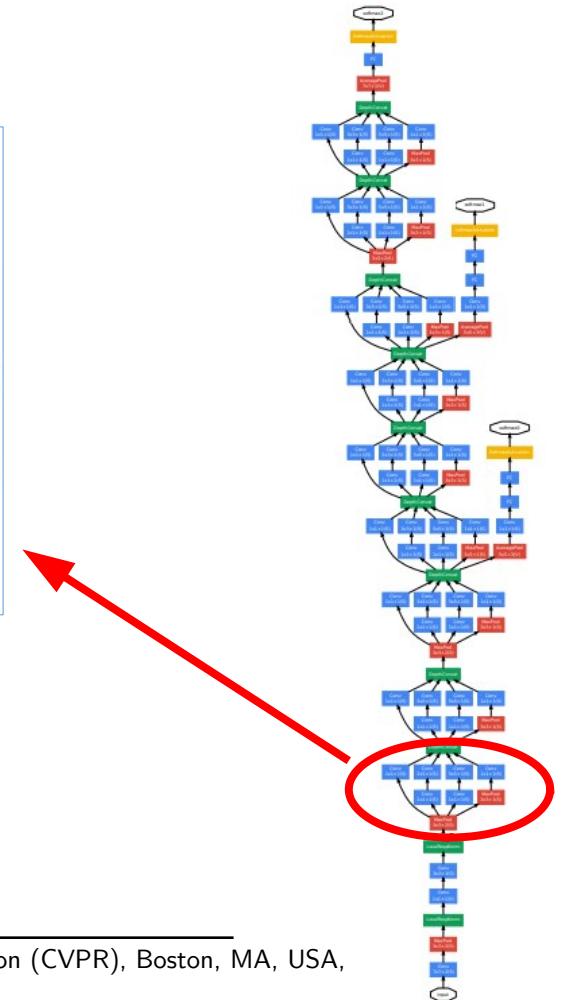


K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition," arXiv:1409.1556, Sep. 2014.



Inception Module

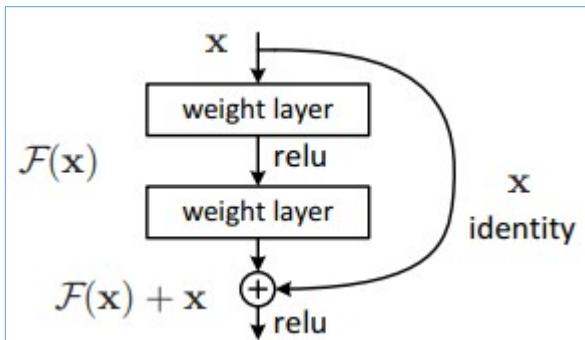
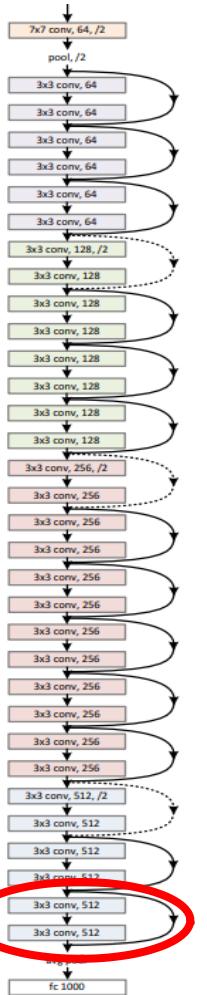
Won the ImageNet Challenge in 2015



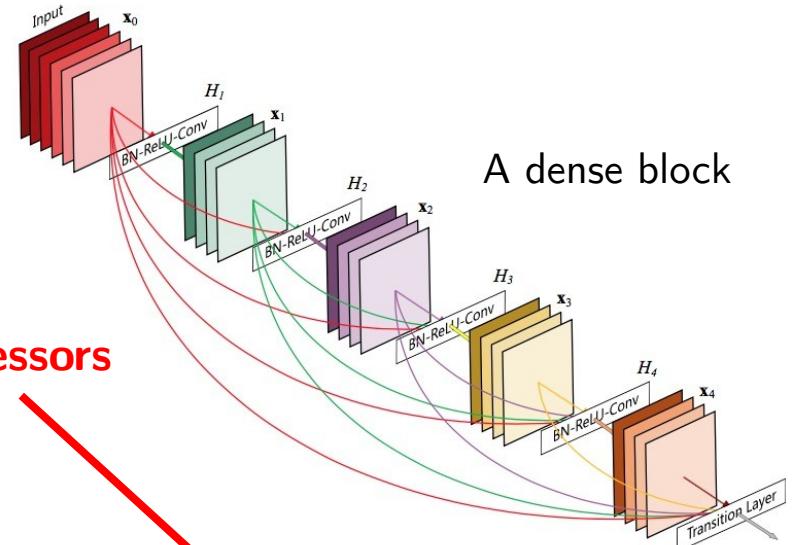
C. Szegedy et al., "Going deeper with convolutions," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015, pp. 1–9.

1000 convolution layers!

Won the ImageNet Challenge in 2016

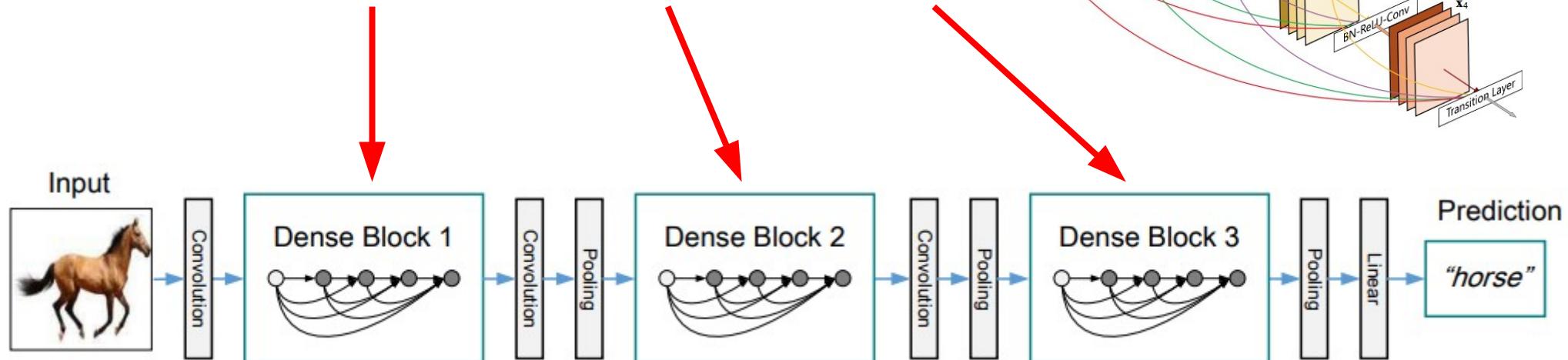


K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, pp. 770–778.



A dense block

Densely connected between each layer and its predecessors



G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 2261–2269.

- Currently, Deep Neural Network (DNNs) models are very popular in the field of machine learning.
 - These models are capable of extracting usable information from raw data automatically.
 - They can be used to solve supervised and unsupervised problems.
- However, the development of DNN-based solutions requires lots of expert knowledge about the problem at hand.
- Another problem, when developing DNN-based solutions, is the amount of computational power required to train and deploy such models.
- **Next class:**
 - How the use of Evolutionary Computation algorithms can help us reduce the problems faced by researchers and experts when developing DNN-based solutions.

Acknowledgments

- I wish to thank Yao Zhou, Ph.D. Candidate at Sichuan University, China, for allowing the use of his slides for this class.
 - Email: zy3381@gmail.com