Evolutionary Computation for Deep Neural Networks

Speaker:

Francisco Erivaldo Fernandes Junior

Ph.D. Candidate in Electrical Engineering
feferna@okstate.edu

Instructor:
Dr. Gary G. Yen

Regents Professor
gyen@okstate.edu

School of Electrical and Computer Engineering
Oklahoma State University
October 31, 2019

Francisco E. Fernandes Jr. EC for Deep Learning 1/49


mailto:feferna@okstate.edu
mailto:gyen@okstate.edu

* [Introduction and Motivation

 Related Works

 Convolutional Neural Network Architecture Search Based on Particle Swarm
Optimization

 Deep Neural Network Pruning with Evolution Strategy

e Conclusions

Francisco E. Fernandes Jr. EC for Deep Learning



* |ntroduction and Motivation
* Related Works

e (Convolutional Neural Network Architecture Search Based on Particle Swarm
Optimization

e Deep Neural Network Pruning with Evolution Strategy

e (Conclusions

Francisco E. Fernandes Jr. EC for Deep Learning



Introduction and Motivation

* Deep Neural Networks are currently the most used models to solve a variety of
difficult real-world problems.

|
S
-
A

| . . . - - . 3
Object classification and Machine translation

localization! Intelligent game playing?
ocalization

Joseph Redmon and Ali Farhadi. “YOLOv3: An Incremental Improvement”. In: arXiv (2018)
2Jeffrey Barratt and Chuanbo Pan. “Playing Go without Game Tree Search Using Convolutional Neural Networks". In: arXiv:1907.04658 [cs] (July 2019)
*https://blog.webcertain.com/machine-translation-technology-the-search-engine-takeover/18/02/2015/

Francisco E. Fernandes Jr. EC for Deep Learning



Introduction and Motivation

e Deep neural networks (DNNs) are models comprised of stacked layers of weight
operations and activation functions.

 Weight Operations:

- Matrices Multiplications;
—  Convolutional Operations;

—  Downsampling Operations.
« Activation Functions:
— Hyperbolic Tangent;
- Sigmoid;
- Rectified Linear Unit (ReLU).

Francisco E. Fernandes Jr. EC for Deep Learning



DNN Designing Challenges

* The development and deployment of DNN architecture are a tedious process
relying in constant trial and error to find the ideal model for a given problem.

Data Collection

(Re)Design DNN architecture e

Y
/Train DNN model/

Performance is

good?

Francisco E. Fernandes Jr. EC for Deep Learning



DNN Designing Challenges

e Although an excellent DNN architecture can be found, there is no guarantee that

it will fit within the constraints of the target hardware.

80 1

Incepti o
DenseNet- 4
DenseNet-lGﬁResNetﬂso
751 & eNet-121

(o)}
w

Top-1 accuracy [%]

[+)]
o

55 1

~l
o

ResNet-34

MobileNEt=v2
MobileNet-v1

ResNet-18
00’

GooglLeNet
Net

P fd-MobileNet

BN-NIN
ShuffleNet

5M

SqueezeNet
BN-AlexNet

AlexNet

50

Inception-v4
Xception
ResNet-101 ResNet-152
VGG-16 VGG-19

35M 65M 95M 125M 155M

10

Francisco E. Fernandes Jr.

20 30 40
Operations [G-Ops]

EC for Deep Learning

50

7/49



DNN Designing Challenges

 To make a DNN learn from real-world data, millions of data samples is required.

 For example:

- CIFAR10: 60,000 color images with 32 x 32 pixels of resolution distributed in 10 classes!.

- ImageNet: 14 million color images with variable resolution distributed in 1,000 classes2.

!Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Technical Report. University of Toronto, Apr. 2009
2Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, June 2009, pp.
248-255

Francisco E. Fernandes Jr. EC for Deep Learning



Problem Statement

 Two desired characteristic of a Deep Neural Network:

— Highly Accurate;

—  Small Computational Complexity.

 The development and deployment of DNN architectures can be seen as a
discrete combinatorial optimization:

- Evolutionary computation (EC) algorithms are good candidates for this type of problems.

e Thus, the development of algorithms based on evolutionary approaches to
design compact and highly accurate DNN architectures is needed to further
advance the field of deep learning.

Francisco E. Fernandes Jr. EC for Deep Learning



* Introduction and Motivation
* Related Works

e (Convolutional Neural Network Architecture Search Based on Particle Swarm
Optimization

e Deep Neural Network Pruning with Evolution Strategy

e (Conclusions

Francisco E. Fernandes Jr. EC for Deep Learning



DNN Architecture Search

* DNN architecture search can be achieved by:
—  Only searching for weights;

—  Only searching for architectures;

— Searching for both weights and architectures at the same time.

* Classical approaches used in DNN architecture search:
- Genetic Algorithms;
- Particle Swarm Optimization;

—  Evolution Strategy;

- Etc.

Francisco E. Fernandes Jr. EC for Deep Learning 11/49



DNN Architecture Search

* Evolutionary approaches that search for weights and architectures at the
same time:

- Neuroevolution of Augmenting Topologies (NEAT ).
- Evolving deep Convolutional Neural Networks (EvoCNN)z2.
* Evolutionary approaches that search only for architectures:

— Large-Scale Evolution of Classifierss.

- Genetic CNNs4.

'Kenneth O. Stanley and Risto Miikkulainen. “Evolving Neural Networks through Augmenting Topologies”. en. In: Evolutionary Computation 10.2 (June 2002), pp. 99-127. doi:
10.1162/106365602320169811

2Yanan Sun et al. “Evolving Deep Convolutional Neural Networks for Image Classification”. In: IEEE Transactions on Evolutionary Computation (2019), pp. 1-1. doi:
10.1109/TEVC.2019.2916183

SEsteban Real et al. “Large-scale Evolution of Image Classifiers”. In: Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML'17. event-place:

Sydney, NSW, Australia. JMLR.org, 2017, pp. 2902-2911
*Lingxi Xie and Alan Yuille. “Genetic CNN". In: The IEEE International Conference on Computer Vision (ICCV). Oct. 2017

Francisco E. Fernandes Jr. EC for Deep Learning

12/49




DNN Architecture Pruning

* Pruning or compression of DNN models is one solution for researchers and experts
with limited computational power available.

* The hypothesis is that many DNN models handcrafted by humans have too many
unnecessary parameters, and the identification and elimination of such parameters
can reduce the model complexity without degrading its performance.

e Convolutional layers are responsible for most of the computational complexity of a
DNN modelt.

e Thus, Convolutional Filter Pruning is the most used technique.

'Hao Li et al. “Pruning Filters for Efficient ConvNets". In: International Conference on Learning Representations. Toulon, France, 2017.

Francisco E. Fernandes Jr. EC for Deep Learning 13/49




oY)
=
(-
- |
~—
al
)
Nl
- |
4+
O
Q
iy
-
O
Nl
<
=
=
O

T
=
=)
g
z
z
a
£
=
S
1
S

Filters of layer i

Filters of layer i + 1

(4x3x3x3)

(3x4%x3x%X3)

3X3X3

Output of layeri + 1

Output of layer i

Input of layer i

— -
[}
— -
[}

Legend:

I

I
1
1
1
I

I
1
1
1
1

I
1
1

r=e=r="r=Tr=-TrTTrTTrT e

I
I
r==r="r=Tr=-TrTTrTTrT e T

I
1
1
1
1

I
1
1
1
1

I
1
I
I
1

1
1
L
1
)
L
1
1
L
]
L
1
[
L
!
i
L
| !
i
L

3x3x%x3

3 X 15x%x 15

---- Filters that will be eliminated

D~
X
D~
X
<

EC for Deep Learning

“
/)
n
[}
e
c
o}
c
—
(@}
L
L
(o}
O
o)
O
c
[
P
L



DNN Architecture Pruning

Pruned DNN model
Filters of layer i Filters of layer i + 1
(3x3x3x3) (3x3x3x3)
Input of layer i Output of layer i
[ [ T [ [ 1
CT T T T T T |
H | Output of layeri + 1
.—_ __1
— 1 ® = |
o - [
SIS :' 3x3x3
3x15x15 3 % 7 % 7

Francisco E. Fernandes Jr. EC for Deep Learning



DNN Architecture Pruning

e Filters are selected for elimination based on some criteria:

- Mean activation: the mean activation of each filter from a given layer is computed, and only the filters
with the highest mean activation are kept!.

- |1-norm: the importance of a filter is determined by its I1-norm, i.e., the sum of the absolute values of
the filter's weight. Filters with smaller |1-norm are considered unimportant compared with filters with large
|1-norm2,

- Average Percentage of Zeros (APoZ): it eliminates the filters with a large number of zero activations
during inference times.

- Random: It randomly select filters to be eliminated without using any prior knowledge of the DNN
architecture or filters. Mittal et al. showed that eliminating filters at random produced comparable results
with other selection criteria.

Pavlo Molchanov et al. “Pruning Convolutional Neural Networks for Resource Efficient Inference”. In: arXiv:1611.06440 (Nov. 2016)

2Hao Li et al. “Pruning Filters for Efficient ConvNets". In: International Conference on Learning Representations. Toulon, France, 2017

SHengyuan Hu et al. “Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures”. In: arXiv:1607.03250 (July 2016)

*Deepak Mittal et al. “Studying the plasticity in deep convolutional neural networks using random pruning”. In: Machine Vision and Applications 30.2 (Mar. 2019), pp. 203-216

Francisco E. Fernandes Jr. EC for Deep Learning



* Introduction and Motivation
* Related Works

* (Convolutional Neural Network Architecture Search Based on Particle Swarm
Optimization

e Deep Neural Network Pruning with Evolution Strategy

e (Conclusions

Francisco E. Fernandes Jr. EC for Deep Learning



CNN Architecture Search on PSO

 To reduce the time of the DNN development phase:

—  An algorithm capable of automatically discovering DNN architectures is desirable.

—  The algorithm should also have a reduced running time compared to peer competitors.
« Particle Swarm Optimization (PSO):

— A global optimization algorithm based on the flying pattern of bird flocks.
— Faster convergence than standard genetic algorithms.

— Thus, PSO is a good candidate approach for DNN architecture search.

F. E. Fernandes Junior and G. G. Yen, “Particle swarm optimization of deep neural networks architectures for image classification,” Swarm and Evolutionary Computation, vol. 49, pp.
62-74, Sep. 2019.

Francisco E. Fernandes Jr. EC for Deep Learning



Proposed Algorithm — psoCNN - 1/2

Algorithm 1: Proposed psoCNN

1 S ={Pi1,...., Py} < InitializeSwarm(N, Imax, filt€rmax, Kmaxs Nmax; Nout );
2 Pi.pBest < Py ;

3 Pjy.loss, Py.pBest.loss < Computeloss(P1, X, €train) ;

4 Initialize gBest < Pr;

5 gBest.loss <— Pj.loss ;

6 for i =2 to N do

7 P;.pBest < P; ;

8 P;.loss, P;.pBest.loss <— ComputelLoss(P;, X, €train) ;
9 if P;.loss < gBest.loss then

10 ‘ gBest «+ P; ;
11 end
12 end

Francisco E. Fernandes Jr. EC for Deep Learning



Proposed Algorithm — psoCNN - 2/2

Algorithm 1: Proposed psoCNN

13 for iter = 1 to iter,,x do

14 for i =1 to N do

15 P;.velocity < UpdateVelocity(P;, Cg) ;
16 P; <— UpdateParticle(P;) ;

17 P;.loss <— ComputelLoss(P;, X, €train) ;
18 if P;.loss < P;.pBest.loss then

19 P;.pBest < P; ;

20 P;.pBest.loss <— P;.loss ;

21 if P;.pBest.loss < gBest.loss then
22 gBest <— P;.pBest ;

23 gBest.loss <— P;.pBest.loss ;
24 end

25 end

26 end

27 end

28 gBest < Computeloss(gBest, X, etest) ;
29 return gBest, gBest.loss ;

Francisco E. Fernandes Jr. EC for Deep Learning



psoCNN - Representation

Invts

Layer Type: Convolution
Number of filters: 128
Filter size: 3x3
Strides: 1x1

Layer Type: Convolution

C Number of filters: 128

Filter size: 3x3
Strides: 1x1

Layer Type: Pooling
Pooling type: Average

Francisco E. Fernandes Jr.

FC

Layer Type: Fully-connected s

Number of neurons: 64

FC

Layer Type: Fully-connected
Number of neurons: 10

EC for Deep Learning

Outputs

21/49




psoCNN - Difference between two particles

Original representation: Separate FC layers
from other layers:
Particle 1 (P1) Conv/Pool FC
Cl|Cl1l|P1|C1|P1|F1|F1|—|C1|C1|P1|C1|P1|—|F1|F1
Particle 2 (P2) Conv/Pool FC
C2|C2|C2|C2|C2|P2|F2|i—i|C2|C2|C2|C2|C2|P2| — |F2
Compute (P1 - P2):
Conv/Pool layers FC layers
P1 Cl|Cl|P1|C1|P1 F1|F1
[ A ] i
¥
P2 C2|C2|C2|C2|C2|P2 F2
Legend:
i i i i l l l Convolution layer
PL-P2 | O | O |P1|/ 0O |(P1]-1 +F1 O EPoolinglayer
Fully-connected layer
@ No difference
pL-P2 | 0| O |P1|{O P1|-1+F10 Removelayer
Final difference Add layer of type L

Francisco E. Fernandes Jr. EC for Deep Learning 22/49



psoCNN - Velocity of a particle

Velocity computation

Conv/Pool layers FC layers
P +F
(g BeSt - P) O O frEn O from -1 Q from O
gBest gBest gBest
T T T T T T Legend:
Random number .
generator. 032 064 08 011 033  0.76 0.36 0.87  0.56 C | Convolution layer
Cg=0.7
i i i P | Pooling layer
P +F |+F Fully- ted |
(pBeSt - P) O frgr:n fgr:n O from O from from O F ully-connected layer
pBest pBest pBest pBest pBest 0 Do not Change Iayer
. l i i ‘L i i i l i -1| Remove layer
Final C P +F
. O O from O from O O from O +L| Add layer of type L
VeIOC|ty pBest gBest pBest

Francisco E. Fernandes Jr. EC for Deep Learning 23/49



Velocity | O | O fngr:n 0 frBoPmt 0 0 _fEmIi 0
Partice | C| P |P | C|C|P F
Updated

Pl clr S clhlp FoF
Particle pBest gBest pBest

Francisco E. Fernandes Jr.

EC for Deep Learning

psoCNN - Particle update

Particle architecture update

Legend:

C | Convolution layer

P | Pooling layer

F | Fully-connected layer

0 | Do not change layer

-1| Remove layer

+L| Add layer of type L

24/49



<

Datasets used to test the proposed psoC

MNIST-RB+BI

Rectangles
Rectangles-I

Convex

MNIST-Fashion



psoCNN — Experimental Results

Table: Test results on the MNIST, MNIST-RD, MNIST-RB, MNIST-BI, MNIST-RD+BI, Rectangles,

Rectangles-I, and Convex datasets.

Model | MNIST | MNIST-RD | MNIST-RB | MNIST-BI | MNIST-RD+BI | Rectangles | Rectangles-1 | Convex
LeNet-1 1.7% (+) - - - - - - -
LeNet-4 1.1% (+) - - - - - - -
LeNet-5 0.95% (+) - - - - - - -
RCNN 0.31% (-) - - - - - - -
DropConnect 0.21% (-) - - - - - - -
CAE-1 2.83% (+) | 11.59% (+) | 13.57% (+) | 16.7% (+) 48.10% (+) 1.48% (+) | 21.86% (+) -
CAE-2 2.48% (+) | 9.66% (+) | 10.90% (+) | 15.5% (+) 45.23% (+) 1.21% (+) | 21.54% (+) -
PCANet-2 1.06%(+) | 8.52% (+) | 6.85% (+) | 11.55% (+) 35.86% (+) 0.49% (+) | 13.39% (+) | 4.19% (+)
RandNet-2 1.27% (+) | 8.47% (+) | 13.47% (+) | 11.65% (+) 43.69% (+) 0.09% (+) | 17.00% (+) | 5.45% (+)
LDANet-2 1.40% (+) | 4.52% (+) 6.81% (+) | 12.42% (+) 38.54% (+) 0.14% (+) | 16.20% (+) | 7.22% (+)
EvoCNN (best) | 1.18% (+) | 5.22% (+) 2.8% (+) | 4.53% (+) 35.03% (+) 0.01% (-) 5.03% (+) | 4.82% (+)
EvoCNN (mean) | 1.28% (+) | 5.46% (+) | 3.59% (+) | 4.62% (+) 37.38% (+) 0.01% (-) 597% (+) | 5.39% (+)
IPPSO (best) 1.13% (+) - - - 34.50% (+) - - 8.48% (+)
IPPSO (mean) | 1.21% (+) - - - 33% (+) - - 12.06% (+)
psoCNN (best) 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.7%
psoCNN (mean) 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.9%

Francisco E.

Fernandes Jr.

EC for Deep Learning



psoCNN — Experimental Results

Table: Test results on the MNIST-Fashion dataset.

Model Test error | # parameters
Human performance 16.5% (+) -
MLP 256-128-100 11.67% (+) 3M
GRU + SVM 11.2% (1) -
HOG + SVM 74% (1) :
AlexNet 10.1% (+) 62.3M
3CONV + 3FC 66% (1) 500K
VGG16 6.5% (+) 26M
GooglLeNet 6.3% (+ 23M
evoCNN (best) 5.47% (-) 6.68M
evoCNN (mean) 7.28% (+) 6.52M
MobileNet 5% (-) 4M
psoCNN — dropout — BN (best) | 8.1% (+) 1.4M
psoCNN — dropout — BN (mean) | 9.15% (+) 1.8M
psoCNN + dropout + BN (best) 5.53% 2.32M
psoCNN + dropout + BN (mean) 5.90% 2.5M

Francisco E. Fernandes Jr. EC for Deep Learning



psoCNN — Experimental Results

Best CNN for the MNIST dataset

Layer: Convolution
# Filters: 77
Filter size: 4x4

Layer: Convolution
# Filters: 189
Filter size: 6x6

Y

Layer: Convolution
# Filters: 91
Filter size: 5x5

+

Layer: Convolution
# Filters: 185
Filter size: 5x5

Y

Layer: Convolution
# Filters: 244
Filter size: 6x6

Layer: AvgPooling
Filter size: 3x3
Strides: 2x2

_ | Layer: Fully-Conn.

# Neurons: 10

Best CNN for the MNIST-BI dataset

Layer: Convolution
# Filters: 67
Filter size: 3x3

Layer: Convolution
# Filters: 126
Filter size: 4x4

Layer: Convolution
# Filters: 159
Filter size: 6x6

-]

Layer: Convolution
# Filters: 252
Filter size: 3x3

Y

Layer: Convolution
# Filters: 202
Filter size: 6x6

Layer: Convolution
# Filters: 202
Strides: 6x6

_ | Layer: Fully-Conn.

# Neurons: 10

Best CNN for the MNIST-RD dataset

Layer: Convolution
# Filters: 189
Filter size: 6x6

Layer: Convolution
# Filters: 182
Filter size: 5x5

Layer: Convolution
# Filters: 236
Filter size: 6x6

]

Layer: Convolution
# Filters: 210
Filter size: 5x5

Best CNN for the Rectangles dataset

Layer: Convolution
# Filters: 139
Filter size: 5x5

Layer: Convolution
# Filters: 113
Filter size: 6x6

Layer: Convolution
## Filters: 226
Filter size: 5x5

Layer: AvgPooling
Filter size: 3x3
Strides: 2x2

_ | Layer: Fully-Conn.

# Neurons: 10

Francisco E. Fernandes Jr.

EC for Deep Learning

Layer: Fully-Conn.
# Neurons: 2




* Introduction and Motivation
* Related Works

e (Convolutional Neural Network Architecture Search Based on Particle Swarm
Optimization

 Deep Neural Network Pruning with Evolution Strategy

e (Conclusions

Francisco E. Fernandes Jr. EC for Deep Learning



Pruning DNN Architectures with ES

e Evolution Strategy is used to select filters
for elimination at random, called

. =4 ;
DeepPruningES. = Legend:
g & % @ Boundary Heavy
e Uses Multi-Criteria Decision Making S min(f,) x® @ Boundary Light
[ e
(MCDM): S x " ® Knee
g b & ¢ Other solutions
- Tries to minimize the number of floating 50 ® %
operations and the training error of a given DNN 3
model at the same time. m % ‘X ®
- From a final population of N individuals, it outputs 2 ¢
three pruned DNN architectures for use by
decision makers (DMs): o X % %
. . Best trade-off &
e Boundary Heavy: A pruned model with the lowest training ®
error.
e Boundary Light: A pruned model with the lowest number of min (f2) ’
floating operations. Tesihig e (F)
* Knee: A pruned model with the best trade-off between training
error and number of floating operations.
Francisco E. Fernandes Jr. EC for Deep Learning 30/49




Representation - DeepPruningES

e Works with:

- Convolutional Neural Networks (CNNs);
- Residual Neural Networks (ResNets);

— Densely Connected Neural Networks (DenseNets).
* Filters of each convolutional layer are represented with a binary string:

- 1: do not eliminate filter;

-  0: eliminate filter.

Francisco E. Fernandes Jr. EC for Deep Learning 31/49



DeepPruningES — CNN Filter Representation

Output from layer i layer i + 1 layer i +2 Output from

layer i — 1 layer i + 2
(16 X 16 X 3 X 3) » (8X 16X 3X3) " (8Xx8x3x%x3) pP—
\ J \ J \ J
1 1 1
l 16 filters 8 filters 8 filters |
layer i ! layeri + 1 layer i +2

| 1 A
{

) 1 1 I I I A A e Y

Binary string to represent a total of 32 filters

Output from layer i layer i +1 layer i +2 Output from
layeri — 1 layer i + 2
——— 8x16x3x%x3) —| (4x8x%x3x3) ] (4x4%x3x%x3) |—

L J | J L J

1 1 1
16 filters 8 filters 8 filters
\ J
1

0)1{0/0(1|0/0|0|1{1|0f{1|2f{1{0(1}0|1({0|0Of1|2|0|2)0|0|0Of1]|0f1}|11

Binary string still has a total of 32 bit, but only 16 filters are kept

Francisco E. Fernandes Jr. EC for Deep Learning 32/49



DeepPruningES — ResNet Filter Representation

This layer can be pruned .
ndependently Conv. - 64 filters
Tensor with
¢ 64 filters

Tensor with
64 filters

However, this layer must be pruned

together with the previous residual CO nv. - 64 ﬁ Ite s
block

Tensor with
64 filters

Because of this addition,

tensors must have the
Tensor with
64 filters

exactly same shape

Francisco E. Fernandes Jr. EC for Deep Learning 33/49



DeepPruningES — ResNet Filter Representation

16 bits 32 bits 64 bits
111111111 111111 | O 111111 | rrrr1r. ... 11111
A A A A A A A A W Total: 112 bits
16 filters | 16 filters | 16 filters! 32 filters | 32 filters 32 filters o4 filters 64 filters 64 fikters

Inputs

Fully-Connected
Outputs

Conv, 32 filters ="}

) - -

Conv, 32 filters |---

|
0 -

Conv, 64 filters

Conv, 32 filters |---

TTTTTTITITTITTITITIT

N -

-1|Conv, 64 filters
Conv, 64 filters [

Conv, 16 filtersf---

Conv, 16 ﬁltersé' y

Conv, 16 ﬁltersg .

-4|Conv, 64 filters

-{|Conv, 16 filters

-=1|Conv, 16 filters
-4|Conv, 32 filters
-1|Conv, 32 filters
-1|Conv, 32 filters
--1|Conv, 64 filters

Y Y Y Y Y Y Y
1

Total: 336 bits

*

Francisco E. Fernandes Jr. EC for Deep Learning 34/49




DeepPruningES — ResNet Filter Representation

16 bits 32 bits 64 bits
0O10 0101011 0T1T1O001 | 11111 . . ... 1 1 1 111 | 11 1. .. .. 1 11 1 11 ‘
A A A A A A A A kTotal: 112 bits

64 filters 1 64 filters !

32 filters : 64 filfers

32 filters 32 filterd

8 filters ! 8 filters |

8 filters

Inputs
Fully-Connected
QOutputs

Conv, 32 filters [~}
Conv, 64 filters |---

TTTTITITTITITTITIT

Conv, 32 filters |---

O |

T T T T I T T T T TTT

Conv, 32 filters [---

TTITITITIIITIIIT

T T T T T T T T T 11T

-4|Conv, 64 filters
Conv, 64 filters [

-4|Conv, 32 filters
-1|Conv, 32 filters
-4|Conv, 64 filters
-=1|Conv, 64 filters

-4|Conv, 16 filters
-4|Conv, 16 filters
-=9|Conv, 16 filters
-=4|Conv, 32 filters

R T T T SR B B
1

— <

Total: 336 bits

Francisco E. Fernandes Jr. EC for Deep Learning



DeepPruningES — DenseNet Filter Representation

Y
- - - - - Bottleneck, 48 filters

Y
Conv, 12 filters  [--+1--3»

-
Y

- [ - - - - Bottleneck, 48 filters

_._._._._.__._|
________|

Y
Conv, 12 filters | __J_ .yl -

> —|

- |-=-tF--4 Bottleneck, 48 filters

Y
Conv, 12 filters  F---1--m

-~ -+ - - Bottleneck, 48 filters

Y
Conv, 12 filters [ --1--3

1 1
1 |
1 |
1 l
1 l
1 l
1 1
1 | 1

Total: 192 bits Total: 48 bits

Francisco E. Fernandes Jr. EC for Deep Learning



DeepPruningES — Proposed Algorithm

N -

3

4
5
6
7
8

Algorithm 2: Proposed DeepPruningES

Input : Offspring size (Asjze), maximum number of generations (gen), mutation
probability (pm,), original DNN model (dnn), number of epochs for individual
evaluation (eeya/), learning rate for individual evaluation (e a/), number of
epochs for fine-tuning (efine ), learning rate for fine-tuning (fine).

Output: Three DNN models: knee solution (u.knee), boundary heavy solution (j.heavy)
and boundary light solution (u.light).

i, A < Initialize Population(Asjze, dnn);
for g = 1 to gen do
P~ p+A

i < Knee Boundary Selection(P, dnn, eqyaj, Qevar);
A\ < Offspring Generation(p, Asize, Pm, dnn);

end

Fine-tuning(\, dnn, €fine, Cfine);

return u.knee, u.heavy, u.light;

Francisco E. Fernandes Jr. EC for Deep Learning



DeepPruningES — Proposed Algorithm

Algorithm 3: Knee and Boundary Selection

Input : Individuals in the Population (P), original
DNN model (dnn), number of epochs for
individual evaluation (ega/), learning rate
for individual evaluation (aeyar)-

Output: Three individuals: knee solution (u.knee),
boundary heavy solution (u.heavy) and
boundary light solution (u.light).

Evaluate Population(P, dnn, eeyal, Cteval);
Find min(fi), min(f,), max(f1), max(f);
p.heavy < P;, where fi(P;) = min(fy);
p.light < Pj, where f,(P;) = min(f);
for k = 1 to len(P) do

‘ dist(k) = A(P)—min(fy) | f(P)—min(f) .

max(f;)—min(f) ~ max(f2)—min(f)’

end
p.knee < Py, where Py has the minimum dist(k);
return p.knee, p.heavy, u.light;

@ Legend:
\g , x . Boundary Heavy
E= ; % R @ Boundary Light
=
% R % % @ Knee
'g x 9 Other solutions
& L
g
E
= i 8
S X
4
P 4
"""""" ’ ¢ %
- %
min(fy) b e '
\ min(f1) Training error (f;)

Francisco E. Fernandes Jr.

EC for Deep Learning

f

Minimum Manhattan Distance




DNN models tested with DeepPruningES

Table: Overview of the DNN architectures used to evaluate the proposed DeepPruningES.

DNN # layers | # FLOPs | Test error on CIFAR10

VGG16 16 3.15 x 10° 6.06%

VGG19 19 4.01 x 10° 6.18%
ResNet56 56 1.27 x 10° 6.63%
ResNet110 110 2.57 x 10° 6.2%

DenseNet50 50 0.93 x 10° 6.92%
DenseNet100 100 3.05 x 108 5.66%

Francisco E. Fernandes Jr. EC for Deep Learning



Pruning results obtained with

the proposed DeepPruningES on CIFAR10

DNN Model | DeepPruningES
Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
VGG16 Knee 9.04% 9.58% 1.09 x 108 1.22 x 10° 65.49% 61.58%
Boundary Heavy 8.21% 8.6% 2.15 x 108 2.49 x 10° 32.01% 20.88%
Boundary Light 10.51% 11.41% 0.88 x 108 0.9 x 108 72.17% 71.36%
Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
VGG19 Knee 9.04% 9.87% 1.53 x 10° 1.72 x 10° 61.86% 57.15%
Boundary Heavy 8.21% 8.77% 2.7 x 108 3.12 x 108 32.56% 22.28%
Boundary Light 10.53% 12.03% 1.13 x 108 1.18 x 10° 71.74% 70.69%
Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
ResNet56 Knee 9.28% 9.98% 0.432 x 10° 0.523 x 108 66.23% 59.15%
Boundary Heavy 8.11% 8.77% 1.01 x 108 1.08 x 10° 21.31% 15.23%
Boundary Light 11.42% 13.36% 0.244 x 108 0.286 x 108 80.89% 77.67%
Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
ResNet110 Knee 8.66% 9.42% 0.905 x 10° 1.03 x 10° 64.84% 59.89%
Boundary Heavy 7.43% 7.93% 2.14 x 10° 2.21 x 10° 16.72% 14.14%
Boundary Light 10.27% 12.9% 0.43 x 108 0.56 x 10° 83.29% 77.86%
Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
DenseNet50 Knee 9.8% 10.43% 0.41 x 10° 0.466 x 10° 56.05% 50.15%
Boundary Heavy 8.91% 9.26% 0.756 x 108 0.779 x 108 19.16% 16.59%
Boundary Light 13.04% 14.8% 0.229 x 10° 0.244 x 108 75.53% 73.91%
Solution Test error (best) Test error (mean) # FLOPs (best) # FLOPs (mean) % Pruned (best) % Pruned (mean)
DenseNet100 Knee 9.04% 9.37% 1.11 x 108 1.21 x 108 63.64% 60.31%
Boundary Heavy 8.34% 8.39% 2.46 x 10° 2.49 x 10° 19.33% 18.24%
Boundary Light 10.47% 11.90% 0.82 x 108 0.879 x 108 73.09% 71.16%

Francisco E. Fernandes Jr.

EC for Deep Learning



DeepPruningES - Population Evolution for Nine Generations

le8 Generation: 1

Offsprings

Knee

Boundary heavy
Boundary light

3.0

EEe+

+
55 - .?'I"* e + m
2.0 A

1.5

Number of Floating Operations

1.0 1

0-5 T T T T T T T T
0.0 2.2 3.0 1.3 10,00 125 15.0 175 20.0

Training Error

Francisco E. Fernandes Jr. EC for Deep Learning 41/49



Conclusions

* Deep Neural Networks (DNNs) are very popular models.

—  However, their development requires expert knowledge about the problem at hand and lots of tedious
work.

* To address this problem, the task of creating DNN architectures is characterized as
a discrete combinatorial problem.

- Particle Swarm Optimization was used to search for meaningful CNN architectures with competitive
results.

* Another problem that can hindering the use of DNNs is their massive computing
requirements.

- Evolution Strategy and Multi-Criteria Decision Making were used tools to allow the pruning of
unnecessary parameters.

—  The algorithm can efficiently find three pruned DNN models with different trade-offs between
computational complexity and accuracy.

Francisco E. Fernandes Jr. EC for Deep Learning



DNN Implementation with Python

 Deep Learning Frameworks:

O PyTOI’Ch https://pytorch.org/

Caffe http://caffe.berkeleyvision.org/

TensorFlow https://www.tensorflow.org

https://mxnet.apache.org/

https://keras.io/

Francisco E. Fernandes Jr. EC for Deep Learning


https://mxnet.apache.org/
https://mxnet.apache.org/
https://mxnet.apache.org/
https://www.tensorflow.org/?hl=zh-cn
http://caffe.berkeleyvision.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
https://keras.io/
https://keras.io/
https://keras.io/

PyTorch Installation

« Step 1: O PyTorch

() PyTorch X + - H %

¢ > C ISR A {Install Anaconda First

PyTorch

Select your preferences and run the install command. Please ensure that you have met the

prerequisites below (e.g., numpy), depending on your package manager. QQEIeilsEYis our
recommended package manag

r since it installs all dependencies. You can also install previous

versions of PyTorch. Note that LibTorch is only available for C++.

Package Pip LibTorch Source

Language Python 2.7 Python 3.5 Python 3.6 Python 3.7

C++
St i = = m

conda install pytorch-cpu -c pytorch
pip3 install torchvision

For Linux and Mac, see instructions on https://pytorch.org/

Francisco E. Fernandes Jr. EC for Deep Learning 44 /49


https://pytorch.org/

PyTorch Installation

 Step 2:

_) ANACONDA https://www.anaconda.com/download

) Downloads - Anaconda x 4+ = x

C & https://www.anaconda.com/download/ w e H
: _- " Download Anaconda
{0 ANACONDA =

= Install it

Download for Your Preferred Platform

= Windows

Anaconda 5.3 For Windows Installer

Python 3.7 version ~

& Download

64-Bit Graphical Installer (631 MB)

32-Bit Graphical Installer (509 MB)

Francisco E. Fernandes Jr. EC for Deep Learning


https://www.anaconda.com/download
https://www.anaconda.com/download
https://www.anaconda.com/download

PyTorch Installation

« Step 3:

After installed Anaconda on your computer,
—— open Anaconda Promopt, and type the following commands:
s [ — conda install pytorch-cpu -c pytorch
i e Nobock pip install torchvision

£
I Anaconda Prompt - conda install pytorch-g

% Spyder

Expand ™

£

@ 3D Viewer
A

AB Access 2016

@ Alarms & Clock

l AMD Catalyst Control Center | EEmEeesTEEe T =
. Anaconda3 (64-bit)
Anaconda Navigator
Anaconda Prompt
::::: otebook

Reset Spyder Settings

Spyder

Type °y’ when asked by “Proceed ([y]/n)?”

If you have GPU on your computer, please refer to instructions on
pytorch.org.

L Type here to search

Francisco E. Fernandes Jr. EC for Deep Learning



How to programming with PyTorch?

Not familiar with Python?
Read the following short tutorial
http://cs231n.github.io/python-numpy-tutorial/

1. Type jupyter notebook in Anaconda Prompt

b

2. Your browser will be open to the following page automatically, then click “New” => “Python3”

C @ localhost:8888/tree w f‘ :

:- Jupyter Quit Logout

Files

Select items to perform actions on them

Francisco E. Fernandes Jr. EC for Deep Learning


http://cs231n.github.io/python-numpy-tutorial/
http://cs231n.github.io/python-numpy-tutorial/
http://cs231n.github.io/python-numpy-tutorial/

How to programming with PyTorch?

* Write code in notebook cells, and run them.

. ZJupyter CNN-exgfBle mgennoes A Logou
Import torCh File Edit View Ins Cell Kgnel Widgets Help Not Trusted |Python3 o
import torch.nn as nn un
import torch.nn.functional as F m (11¢ [ 1] tmpors o R il o irr o h et one
class Net(nn.Module): S|impare o Funan
def __init__(self): 3 otome ol 1
super(NetI Self)'_lnlt_() ; : Cell Type » '(;0, kernel_si?e=f)
self.convl = nn.Conv2d(1, 10, kernel_size=5) . S e e eaaqy
11 s 50)
12 s Al Output » 10)
self.conv2 = nn.Conv2d(10, 20, kernel_size= o Rttt e S
16 x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
17, X = X.view(-1, 320)
self.conv2_drop = nn.Dropout2d() - o Sp o SN
. 20 x = self.fc2(x)
self.fcl = nn.Linear(320, 50) 21 return F.log_softmax(x, dim-1)
self.fc2 = nn.Linear(50, 10)
def forward(self, x): 10(5x5) 20(5x5)
x = F.relu(F.max_pool2d(self.convl(x), 2)) . .
X = - » »
F.relu(F.max_pool2d(self.conv2_drop(self.conv
2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x) PyTorch implementation of a CNN,
return Flog_softmax(x, dim=1) which consists of 2 conv layers and 2 fully connected layers.

Francisco E. Fernandes Jr. EC for Deep Learning



How to programming with PyTorch?

* Training the CNN on MNISTH dataset for handwritten digit recognition

1 import torch.optim as optim
2 from torchvision import datasets, transforms

3
4
5
6
7
8

9
10
14
12
13!
14
15
16
17
18
19
20
21
22
23
24
25
26
27

def

def

train(model, device, train_loader, optimizer, epoch):
model.train()
train_loss = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()

train_loss += loss.item()
train_loss /= len(train_loader.dataset)
print('Train Epoch: {} \tLoss: {:.6f}'.format(epoch, train loss))
return train_loss

test(model, device, test loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test _loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch
pred = output.max(l, keepdim=True)[l] # get the index of the max log-probabilit]
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)

test_acc = 100. * correct / len(test_loader.dataset)

print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0£}%)\n'.format(
test_loss, correct, len(test loader.dataset), test_acc))

return test_loss, test_acc

[1] http://yann.lecun.com/exdb/mnist/

Francisco E. Fernandes

1
2
3
4
5
6
7
8

def dataloaders(batch_size=32, test batch_size=32):
train loader = torch.utils.data.DataLoader(
datasets.MNIST('./data', train=True, download=True,
transform=transforms.Compose ([
transforms.ToTensor(),
transforms.Normalize((0.1307,),
1)),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader (
datasets.MNIST('./data', train=False, transform=transforms.Compose( [
transforms.ToTensor(),
transforms.Normalize((0.1307,),
1)),
batch_size=test_batch size, shuffle=True)
return train loader, test_loader

(0.3081,))

(0.3081,))

device = torch.device("cpu")

model = Net().to(device)

optimizer = optim.SGD(model.parameters(), 1lr=0.001, momentum=0.5)

train loader, test_loader = dataloaders(batch_size=32, test_batch size=32)

for epoch in range(l, 10):
train_loss = train(model, device, train_loader, optimizer, epoch)
test_loss,test _acc = test model, device, test loader

038

06

04 4

024

0.0 1

99+% accuracy,
significantly better
than many other
machine learning
techniques!!!

— training loss
— test loss
—— test accuracy

ep Learning



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

