Simplifying RL optimization for everyone, from cognitive scientists to machine learning experts

AGENTFORGE: A Flexible Low-Code Platform for Reinforcement Learning Agent Design

Background:

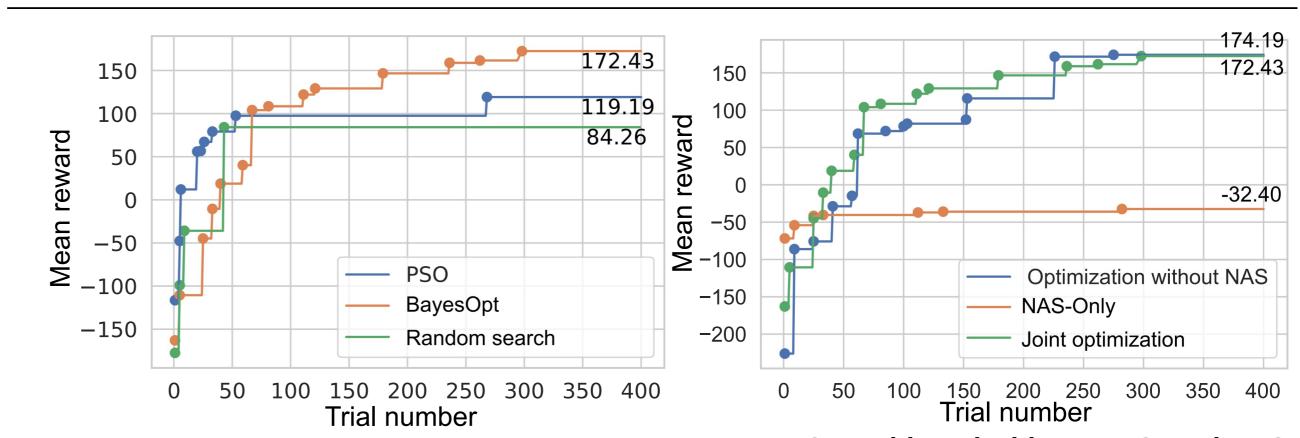
- Challenge: RL agent design involves complex, interdependent parameters that are difficult for non-experts to optimize.
- Solution: A low-code platform simplifies parameter optimization and supports rapid iteration.
- Target Users: Cognitive scientists, behavioral researchers, and machine learning practitioners.

Input sample

Results

- Environment: Pixel-based Lunar Lander POMDP.
- Metrics: Mean reward over 300 episodes.

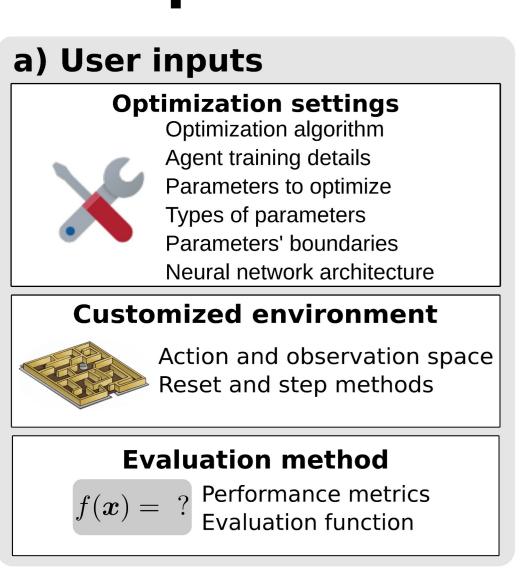
Parameter	\mathbf{Type}	Category	Range	Random search	${\bf BayesOpt}$	\mathbf{PSO}
Field of view's size (pixels)	Integer	Environment	[40, 92]	71	92	92
Discount factor (γ)	Float	Agent	[0.4, 0.8]	0.7934	0.7984	0.8
Generalized advantage estimation (λ)	Float	Agent	[0.9, 0.95]	0.9433	0.9299	0.95
Learning rate	Float	Agent	$[3.5 \cdot 10^{-4}, 3.5 \cdot 10^{-3}]$	0.0006	0.0034	0.0035
Number of epochs	Integer	Agent	[3, 10]	6	3	5
Entropy coefficient	Float	Policy	[0.01, 0.1]	0.0284	0.0279	0.1
Clipping range	Float	Policy	[0.01, 0.3]	0.1407	0.0178	0.3
Activation function	Float	Policy	[0.0, 1.0]	0.5478	0.9259	1.0
No. of layers in policy	Integer	Policy	[1, 4]	1	3	4
No. of neurons per layer in policy	Integer	Policy	[64, 128]	83	89	127
No. of layers in value network	Integer	Policy	[2,4]	4	2	4
No. of neurons per layer in value	Integer	Policy	[64, 128]	100	89	128
Mean reward				84.26	172.43	119.19

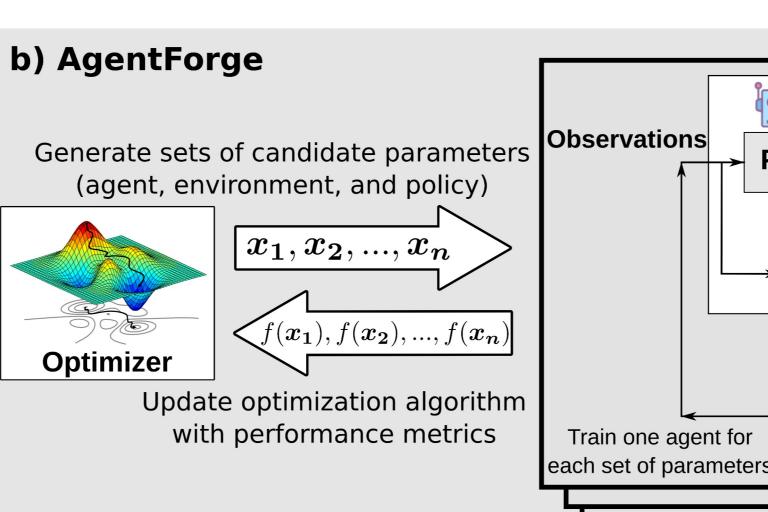


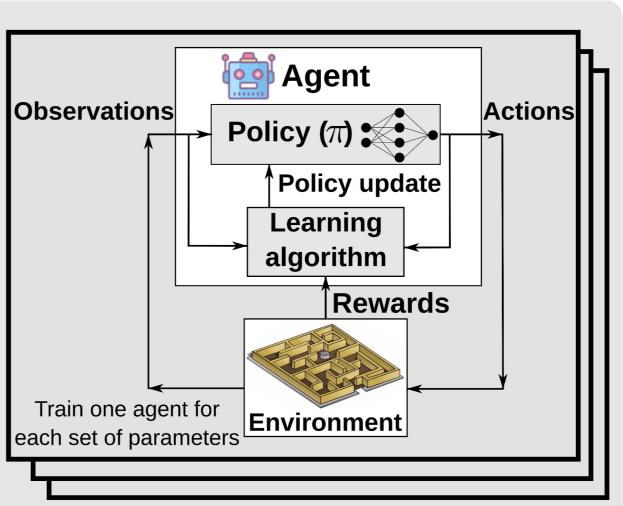
Joint optimization of parameters with NAS

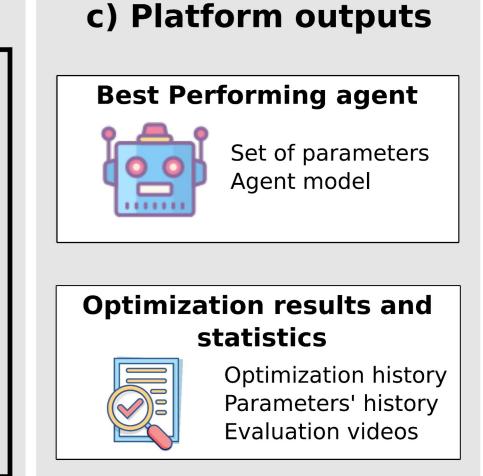
BayesOpt, with and without NAS, and NASonly optimization

Proposed Framework









Limitations and Future Work: We support only Gymnasium environments and we don't have a GUI yet. Future work includes broader compatibility, more algorithms, a GUI, and user studies to assess effectiveness.

